
10+ years experience of IDPs (Internal Developer Platform)
to support fast growing companies

Ulf Månsson, infrastructure ninja at Adfenix, @ulfmansson

Real Estate. Real Relationships.

Why an IDP can act as a
turbo for business growth

● Sys admin
● Infrastructure engineer
● Infrastructure architect
● Infrastructure developer
● SRE engineer
● Manager
● Devops engineer
● Plumber
● Devops architect
● Pipeline expert
● Devops specialist
● Infrastructure ninja
● Platform engineer?

My job titles for the last 15 years

My job titles has never been - YAML engineer

+ = crap

= busy with
important
stuff

I needed some help with the presentation

+ = ok

My daughters

Osslund

Paul Gauguin

+

Title+

Title+

● An Internal Developer Platform (IDP) is built by a platform team to build golden paths and enable
developer self-service. An IDP consists of many different techs and tools, glued together in a way
that lowers cognitive load on developers without abstracting away context and underlying
technologies

What is an IDP

Why an IDP? I am lazy

● Speed of feature development and deployed
● Cost
● Quality
● Easy to adopt infrastructure to new requirements

Why an IDP -
from a business perspective

● Top performers run all loosely coupled
architectures in 95.5% of their
applications

● Public cloud is the dominant approach,
especially with top performers

● For top performers, configuration as
code is completely normal (95.5%)

● 92% of top performing teams manage
their infrastructure with Infrastructure
as Code solutions

What make top performers -
 According to the study “DevOps Setups by Humanitec”

● 93% of top performers are adopting containers and most of them are
already fully migrated

● Over 80% of top performers deploy at least several times per day
● The time it takes to implement, test, and deliver code. It takes

minutes for over 50% of top performers and there are almost no high
or top performers that take more than a week. Think about the
compounding effect if you are 100 times faster in every single
delivery.

● Almost 100% of all teams in the top performance bucket report
that their developers can self-serve what they need from their
setup to run their apps and services.

What make top performers, cont

A book - Good to great

One of the successful CEOs Dave
Packard also liked to drive his tractor -
upon his death, his family created a
eulogy pamphlet,with a photo of him
sitting on a tractor in farming clothes.

About companies that went from
good companies to great companies

Disciplined thinking to the dogged
pursuit of a core mission.

● If you edit YAML-files then you
haven’t automated and can’t
standardize

● You are then manage pets
● Everything should be dynamic, like

kubernetes setups, dbs etc

Never edit yaml files

● Never edit json or yaml
● Never disturbed by a developer
● Happy management
● Never get titles like Employee of the

month
● Never disturbed by an alert

Definition if you have an IDP

Standardise - make it simple to do the right thing

This means:
● Make it hard to manually change things
● Make it hard to do the wrong thing

3 Stories

3 IDPs I have been part of creating

● An Unicorn
● 2010 about 10 employees
● 2022 800+ employees
● 2022 1500 clients
● 70+ micro services
● 1000nds of AWS instances
● PB of data

Company #1 - Recorded Future

● Delivered new features in an insane
speed to meet customer demands

● Major data growth all the time from
GBs to PBs

● Always a SaaS

The speed of delivery of new features -
had major impact on Recorded Future growth

● Developers could focus on writing code that made a difference
● Just a few hours to get a new micro service up and put in production
● The code the developers wrote was focused on the features and not boiler

code like DB error handling, interact with metric system etc
● It was not only the service that was put in production, automatically there was

logging, metrics, dashboards, alerts etc created

If something got wrong in deployment or infrastructure not working, the
infrastructure team took care of that. Developers only needed to take care of
problems caused by code

The IDP at Recorded Future made this possible

● Definition from 2010
(John Willis):
○ Culture
○ Automation
○ Monitoring
○ Sharing

How it started - DevOps

● Configuration Management - all infrastructure
● Continuous Integration
● Continuous Delivery

Automation

● No singleton processes
● Only deploy via deploy pipelines
● Need to build for Chaos monkey (Spot instances)
● Messaging to interact between services
● Use of wrappers for messaging, DB interaction etc
● Trunk-based development
● Feature toggle
● Mono-repo

Requirements on developers

The IDP at Recorded Future

Code
repository
(subversion)

AWS Autoscaling
groups
(= Kubernetes)

Grafana Kibana (ELK) Sensu - monitoring

Sysadmin team a.k.a
Infrastructure team a.k.a
Devops team a.k.a
Devopssec team a.k.a
Platform team

One team to create and maintain the IDP

+ A “backend” team

● Common code
● Common wrappers
● Common metrics
● Common logging

+ Very strong management support

● Management supported the
approach

● Appointed leaders

● The platform could include many tools
● Different UIs

The IDP is a platform not an UI

Manual work

A lot of knowledge
needed in the team

Expensive

Teams manage everything

IDP means standardisation -

need to do stuff in the same way

Standardisation

Goal for development team is to deliver features

With enough quality

Competitive advantage

or

● Naming of processes - use the same name at all places
● Development languages
● Database engines
● Build process
● Deployment process
● Feature toggling
● Tools
● DNS
● Monitoring
● Alerting/Escalation/Paging
● Logging

What did we standardise

● Standardised wrappers around
○ Database clients
○ Messaging clients
○ Logging clients

● Included logging, metrics and error handling

Wrappers

● Tried to create an agile organization
● Tried to implement a startup culture

Company #2 - Failure - large company

● Weak leadership
● Multi cloud platforms
● Every team could make their own decisions
● Infrastructure/platform team was seen as support team
● No strong mandates

Why it failed - management

● Different technologies
● No standardisation
● Team could choose technologies
● No common code
● Different repos

Why it failed - technology

● Started with a monolith
● Running in a data center on hardware
● Installation per customer
● Expanded also by buying companies, need to be integrated

Company #3, Adfenix

● Created a micro service architecture
● Rewrote the monolith into services
● Message based architecture
● Moved to cloud and AWS

Built a micro service architecture

● 5 minutes to create a new micro service and deploy it in production
● Based on experience from Recorded Future and failures from the large company - and based on

other employees experience as well
● Developers could focus on features not on Kubernetes and other shitty tools
● From one feature deploy per week to 3-4 deploys per day

We are able to recreate a Kubernetes cluster with all services in 1 hour

Created an IDP, Internal Developer Platform

At Etsy we have one hard and fast rule for new
Engineers on their first day: deploy to production.

By John Goulah
13 Mar 2012

The UI to create a new micro service

Create a new microservice in 5 minutes {

 "microservice": "auth-service",

 "database": "authservicedb",

 "deployTo": "all",

 "policies": [

 {

 "name": "microserviceReadSecrets"

 },

 {

 "name":

"microserviceCognitoUserPoolSecrets"

 }

],

 "type": "private"

 },

More stuff created in 5 minutes {

 "microservice": "auth-service",

 "database": "authservicedb",

 "deployTo": "all",

 "policies": [

 {

 "name": "microserviceReadSecrets"

 },

 {

 "name":

"microserviceCognitoUserPoolSecrets"

 }

],

 "type": "private"

 },

Grafana Kibana (ELK) Sensu - monitoring Confluence
documentation

GithubInitiate
builds

Deploys

Common
rules

Infrastructure
config

Select
service

Autogenerated documentation

● Pulumi
● Jsonnet
● Github
● ArgoCD
● Tanka
● Confluence
● Jenkins
● Ruby
● Chef

Tools used in IDP at Adfenix

● Pulumi
● Jsonnet
● Github
● ArgoCD
● Confluence
● Jenkins
● Ruby
● Chef

Tools used by developers Adfenix - focus on UI
and view

● It’s so easy, it makes my life easier
● I can focus on code
● Please, move the company we bought into our platform so we

can get logs, metrics etc in proper way

What our developers says

● The team manage the IDP are supplier to the developers
● Important with a good dialogue and understanding
● Empathy

Important to work close with developers

Why an IDP can act as a
turbo for business growth

