


EFFICIENT 
KUBERNETES SCALING
USING KARPENTER_

Marko Bevc





ABOUT
ME_ ● Head of Consultancy at The Scale Factory (B2B SaaS consultancy, 

AWS Advanced consulting partner and K8s service provider)
● Ops background, wearing different hats, engaged with many 

different technologies
● Open source contributor, maintainer and supporter
● HashiCorp Ambassador, OpenUK Ambassador
● Certifications and competencies: AWS, CKA, RHEL, HCTA
● Fan of automation/simplifying things, hiking and travelling

@_MarkoB

https://www.linkedin.com/in/marko-bevc/

| @marko@hachyderm.io

https://www.linkedin.com/in/marko-bevc/


KUBERNETES 
SCALING_

• None out of the box – manual 👩‍💻👨‍💻

• Kubernetes resources:
–Pods – the smallest execution unit
–Nodes – compute/instances to run Pods on
–Other: storage, network, etc.

@_MarkoB



HPA
CONCEPT_

• Horizontal Pod Autoscaler

• Adding more instances(e.g. Pods)

• Doesn’t apply to non-scalable objects (e.g. DaemonSet)

• Target observed metrics (i.e. average CPU or memory 

utilization)

• Scaling out



VPA
CONCEPT_

• Vertical Pod Autoscaler

• Adjusting size/power (e.g. resources/limits)

• “Right-sizing” your workloads to actual usage

• Most commonly used on a Deployment objects

• Scaling up



PODS
SCALING_

• Other approaches:
– HPA | VPA* (HorizontalPodAutoscaler | VerticalPodAutoscaler)
– GCP: MultidimPodAutoscaler
– KEDA (K8s Event Driven Autoscaling)
– Knative (K8s based serverless platform)



CLUSTER
AUTOSCALER_

• Industry ‘de-facto’ auto-scaling standard

• Cost efficiency – automatically adjusts cluster: scale up/down

• Leaning on existing Cloud building blocks

• Challenges: Node Group limitations (AZ, instance type, labels), 

complex to use, tightly bound to the scheduler, global controller



CLUSTER
AUTOSCALER
SCALE-UP_

● Reconciliation and filtering
● Scale up (in-memory simulation, <10sec)
● Expanders: random, most/least pods, price, priority
● Scale down (<10min)

New Nodes

Pending Pods

10 sec



NODE
SCHEDULING_

@_MarkoB

Kubernetes

Control Plane



unscheduled

@_MarkoB

NODE
SCHEDULING_

Kubernetes

Control Plane



unscheduled

@_MarkoB

NODE CA
SCHEDULING_

Kubernetes

Control Plane



size, arch, GPU, etc.

@_MarkoB

NODE KARPENTER
SCHEDULING_

Kubernetes

Control Plane



KARPENTER
ARCHITECTURE_

@_MarkoB

https://karpenter.sh



KEY
CONCEPTS_

• Straightforward setup:
– Provision AWS IAM Roles for Service Accounts (IRSA)
– Install controllers (leader elect HA)
– Apply Provisioner CRD (configuration) – one or more!
– Deploy workloads

• Capacity life-cycle loop: watch  evaluate  provision  remove→ → →
• Well-known labels as Provisioner constraints:

– kubernetes.io/arch = amd64
– kubernetes.io/os = linux
– node.kubernetes.io/instance-type = m5.large
– topology.kubernetes.io/zone = eu-west-1
– karpenter.sh/capacity-type = on-demand | spot

● Multi-dimension scaling (up/down and in/out)!

@_MarkoB



SCALING
UP_

• Provisioning and scaling

• Adding more just-in-time capacity to meet demand

• Early binding to nodes
• Scheduling constraints: resource.requests, nodeAffinity, nodeSelector, 

PodDisruptionBudget, topologySpreadConstraints, inter-pod (anti-)affinity

• Removing scheduler tight coupling

@_MarkoB

New Node

Pending Pods

<10 sec



SCALING
IN_

@_MarkoB

<10 sec

Obsolete Node

Pending Pods

• Terminate obsolete capacity  reducing costs→
• Removing underutilised or empty nodes

• Node TTLs (emptiness & expiration)

• Consolidation

• Interruption

• Drift



CAPACITY
CONSOLIDATION_

● Consolidation, a.k.a off-line bin packing
● Rebalancing Node workloads based on utilisation (CPU, memory)
● Mechanisms for cluster consolidation:

– Delete (on-demand | spot)
– Replace (on-demand)

● Optimises for cost, minimising disruption obeying:
– Scheduling constraints (PDBs, AZ affinity, topology spread constraints)
– Termination grace period and expiration TTL
– Instance unhealthy events and spot events (termination)

● Using least disruption when multiple Nodes that could be consolidated:
– Nodes running fewer pods
– Nodes that will expire soon
– Nodes with lower priority Pods

@_MarkoB



OTHER
OPTIONS_

● Custom User Data and AMI (i.e. Bottlerocket)
● Kubelet configuration (containerRuntime, systemReserved)
● Taints (or startupTaints)
● Control Pod Density

– Network limitations
● Number of ENIs
● Number of IP addresses that can be assigned to ENI

– Static Pod Density (podsPerCore)
– Dynamic Pod Density (maxPods)
– Limit Pod Density: topology spread, restrict instance types

@_MarkoB



TIME FOR 
A DEMO!_

@_MarkoB



CONCLUSIONS_

& TAKEAWAYS

● Capacity planning is hard! 🧪
● Key advantages: 🔥

– Flexible, lowers complexity & portable
– Fast: provisioning latency <1min  down to 15sec (group-less)→
– Efficient: multi-dimension scaling, consolidation (delete or replace)
– Adaptive: right-sizing, interruption events
– Compliance (TTL)📖

● To keep in mind: 🧑‍🏫
– Currently supported provider is AWS (adoption in the future?*)
– Not supporting Spot Rebalance Recommendations
– Careful with non-interruptable workloads, edge case of 1 replica
– https://github.com/aws/karpenter/issues  ➡️⚒️

@_MarkoB

https://github.com/aws/karpenter/issues


● Resources:
– https://github.com/mbevc1/public-speaking/
– https://github.com/aws/karpenter/
– https://kubernetes.io/docs/reference/labels-annotations-taints/
– https://github.com/kubernetes/autoscaler
– https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html
– https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/proposals/

scalability_tests.md
– https://blog.kloia.com/karpenter-cluster-autoscaler-76d7f7ec0d0e
– https://blog.scaleway.com/understanding-kubernetes-autoscaling/
– https://aws.amazon.com/blogs/aws/introducing-karpenter-an-open-source-high-performance-

kubernetes-cluster-autoscaler/

FURTHER
READING_

@_MarkoB



KEEP IN
TOUCH_

https://www.scalefactory.com/
@_MarkoB
@mbevc1
@mbevc1
https://www.linkedin.com/in/marko-bevc/

https://www.scalefactory.com/Web:
Twitter:
GitHub:
GitLab:
LinkedIn:

https://www.linkedin.com/in/marko-bevc/

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 33
	Slide 34
	Slide 35
	Slide 36

