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ABOUT
ME_ ● Head of Consultancy at The Scale Factory (B2B SaaS consultancy, 

AWS Advanced consulting partner and K8s service provider)
● Ops background, wearing different hats, engaged with many 

different technologies
● Open source contributor, maintainer and supporter
● HashiCorp Ambassador, OpenUK Ambassador
● Certifications and competencies: AWS, CKA, RHEL, HCTA
● Fan of automation/simplifying things, hiking and travelling
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https://www.linkedin.com/in/marko-bevc/

| @marko@hachyderm.io

https://www.linkedin.com/in/marko-bevc/


KUBERNETES 
SCALING_

• None out of the box – manual 👩‍💻👨‍💻

• Kubernetes resources:
–Pods – the smallest execution unit
–Nodes – compute/instances to run Pods on
–Other: storage, network, etc.
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HPA
CONCEPT_

• Horizontal Pod Autoscaler

• Adding more instances(e.g. Pods)

• Doesn’t apply to non-scalable objects (e.g. DaemonSet)

• Target observed metrics (i.e. average CPU or memory 

utilization)

• Scaling out



VPA
CONCEPT_

• Vertical Pod Autoscaler

• Adjusting size/power (e.g. resources/limits)

• “Right-sizing” your workloads to actual usage

• Most commonly used on a Deployment objects

• Scaling up



PODS
SCALING_

• Other approaches:
– HPA | VPA* (HorizontalPodAutoscaler | VerticalPodAutoscaler)
– GCP: MultidimPodAutoscaler
– KEDA (K8s Event Driven Autoscaling)
– Knative (K8s based serverless platform)



CLUSTER
AUTOSCALER_

• Industry ‘de-facto’ auto-scaling standard

• Cost efficiency – automatically adjusts cluster: scale up/down

• Leaning on existing Cloud building blocks

• Challenges: Node Group limitations (AZ, instance type, labels), 

complex to use, tightly bound to the scheduler, global controller



CLUSTER
AUTOSCALER
SCALE-UP_

● Reconciliation and filtering
● Scale up (in-memory simulation, <10sec)
● Expanders: random, most/least pods, price, priority
● Scale down (<10min)

New Nodes

Pending Pods

10 sec



NODE
SCHEDULING_
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Kubernetes

Control Plane



unscheduled
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NODE
SCHEDULING_

Kubernetes

Control Plane



unscheduled
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NODE CA
SCHEDULING_

Kubernetes

Control Plane



size, arch, GPU, etc.
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NODE KARPENTER
SCHEDULING_

Kubernetes

Control Plane



KARPENTER
ARCHITECTURE_
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https://karpenter.sh



KEY
CONCEPTS_

• Straightforward setup:
– Provision AWS IAM Roles for Service Accounts (IRSA)
– Install controllers (leader elect HA)
– Apply Provisioner CRD (configuration) – one or more!
– Deploy workloads

• Capacity life-cycle loop: watch  evaluate  provision  remove→ → →
• Well-known labels as Provisioner constraints:

– kubernetes.io/arch = amd64
– kubernetes.io/os = linux
– node.kubernetes.io/instance-type = m5.large
– topology.kubernetes.io/zone = eu-west-1
– karpenter.sh/capacity-type = on-demand | spot

● Multi-dimension scaling (up/down and in/out)!
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SCALING
UP_

• Provisioning and scaling

• Adding more just-in-time capacity to meet demand

• Early binding to nodes
• Scheduling constraints: resource.requests, nodeAffinity, nodeSelector, 

PodDisruptionBudget, topologySpreadConstraints, inter-pod (anti-)affinity

• Removing scheduler tight coupling

@_MarkoB

New Node

Pending Pods

<10 sec



SCALING
IN_

@_MarkoB

<10 sec

Obsolete Node

Pending Pods

• Terminate obsolete capacity  reducing costs→
• Removing underutilised or empty nodes

• Node TTLs (emptiness & expiration)

• Consolidation

• Interruption

• Drift



CAPACITY
CONSOLIDATION_

● Consolidation, a.k.a off-line bin packing
● Rebalancing Node workloads based on utilisation (CPU, memory)
● Mechanisms for cluster consolidation:

– Delete (on-demand | spot)
– Replace (on-demand)

● Optimises for cost, minimising disruption obeying:
– Scheduling constraints (PDBs, AZ affinity, topology spread constraints)
– Termination grace period and expiration TTL
– Instance unhealthy events and spot events (termination)

● Using least disruption when multiple Nodes that could be consolidated:
– Nodes running fewer pods
– Nodes that will expire soon
– Nodes with lower priority Pods
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OTHER
OPTIONS_

● Custom User Data and AMI (i.e. Bottlerocket)
● Kubelet configuration (containerRuntime, systemReserved)
● Taints (or startupTaints)
● Control Pod Density

– Network limitations
● Number of ENIs
● Number of IP addresses that can be assigned to ENI

– Static Pod Density (podsPerCore)
– Dynamic Pod Density (maxPods)
– Limit Pod Density: topology spread, restrict instance types

@_MarkoB



TIME FOR 
A DEMO!_
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CONCLUSIONS_

& TAKEAWAYS

● Capacity planning is hard! 🧪
● Key advantages: 🔥

– Flexible, lowers complexity & portable
– Fast: provisioning latency <1min  down to 15sec (group-less)→
– Efficient: multi-dimension scaling, consolidation (delete or replace)
– Adaptive: right-sizing, interruption events
– Compliance (TTL)📖

● To keep in mind: 🧑‍🏫
– Currently supported provider is AWS (adoption in the future?*)
– Not supporting Spot Rebalance Recommendations
– Careful with non-interruptable workloads, edge case of 1 replica
– https://github.com/aws/karpenter/issues  ➡️⚒️

@_MarkoB

https://github.com/aws/karpenter/issues


● Resources:
– https://github.com/mbevc1/public-speaking/
– https://github.com/aws/karpenter/
– https://kubernetes.io/docs/reference/labels-annotations-taints/
– https://github.com/kubernetes/autoscaler
– https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html
– https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/proposals/

scalability_tests.md
– https://blog.kloia.com/karpenter-cluster-autoscaler-76d7f7ec0d0e
– https://blog.scaleway.com/understanding-kubernetes-autoscaling/
– https://aws.amazon.com/blogs/aws/introducing-karpenter-an-open-source-high-performance-

kubernetes-cluster-autoscaler/

FURTHER
READING_
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KEEP IN
TOUCH_

https://www.scalefactory.com/
@_MarkoB
@mbevc1
@mbevc1
https://www.linkedin.com/in/marko-bevc/

https://www.scalefactory.com/Web:
Twitter:
GitHub:
GitLab:
LinkedIn:

https://www.linkedin.com/in/marko-bevc/
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