
How do we make Rudder secure?
Security strategy for Rudder

Alexis Mousset



All rights reserved

whoami

● Alexis Mousset
○ amo@rudder.io

○ twitter.com/AlexisMousset

● Sysadmin background

● Lead System Developer @Rudder
○ Agent

○ Configuration policies

○ Security

● Secure Code Working Group @Rust



All rights reserved

Agenda

Overview of several security-related topics:

● Rudder hardening

● Vulnerabilities handling

● Software supply chain security

● Dev team culture & processes



Rudder Server/Agent Security & Hardening



All rights reserved

In Rudder itself

● Security of Rudder is (now) integrated as a source for the roadmap
○ Prioritized independently

● Regular integration of security items in releases



All rights reserved

In Rudder

Node-server communication security cycle (since 6.1) (but actually started back in 

2015)

● Recent TLS (1.2+) everywhere

● Switch to a unique key for both communication protocols

● Certificate verification everywhere (still TOFU by default)

● Splittable virtual env for Web/API vs. node-server communication

● Ports configuration allowing finer firewall rules



All rights reserved

In Rudder

User authentication

● No default password for admin account
○ Especially in addition to the missing indexation configuration

● Proper hash for local passwords (bcrypt)

● Hide API tokens in UI

● 2FA with OpenID Connect/OAUTH2



All rights reserved

In Rudder

Services hardening (6.X)

● relayd and slapd have a strict sandboxing policy
○ Run as dedicated system user

○ SELinux on RHEL

○ systemd-based hardening

■ ProtectSystem=strict + ReadWritePaths=...
■ PrivateTmp=True



All rights reserved

In Rudder

Compilation hardening options (7.0)

● Follow best practices for C compilers
○ -fstack-protector-strong
○ -Wl,-z,relro -Wl,-z,now (full relro)

○ -D_FORTIFY_SOURCE=2
○ -fPIE / -pie



All rights reserved

In Rudder

Frontend side (7.3)

● Proper session expiration

● XSS hardening (CSP, etc.)

● CSRF hardening (SameSite)

● HSTS (built-in setting)

● Package manager for JS/CSS dependencies (npm)



All rights reserved

In Rudder

Identified next steps:

● Replace usage of AngularJS

● Don’t store clear-text API tokens on the server

● Built-in 2FA (WebAuthn/TOTP)

● Stop running services listening on the network as root (jetty, cf-serverd)

● TLS 1.3

● etc.



Vulnerability handling process



All rights reserved

Vulnerability handling process

We now have defined a policy & process (before 2020: ad-hoc handling)

● Centralized reporting at: security@rudder.io
● Internal database which contains all data and actions taken

● Embargo with private tickets and late code push

● Communication
○ Customer notice in advance

○ Community notice a week after

○ Low public communication, to avoid attracting The Eye of Sauron

mailto:security@rudder.io




Software supply chain security



All rights reserved

Context



All rights reserved

Context

● Software supply chain risks
○ SolarWinds: Targeted attack against a critical supplier

○ Log4shell: Known vulnerability in low level components

● Will very likely continue to be an important topic in the coming years



All rights reserved

Context

Rudder is a critical component with a lot of dependencies

● Runs everywhere with admin rights

● Talks on the network

● Exposes interfaces to multiple systems and people

● Rather complex piece of software with mixed technologies



All rights reserved

Context

We need to:

● Carefully manage our own dependencies

● Apply good development practices regarding security

● Ensure the security of our sources, build process and linked infrastructure

● Provide the required information to our users (docs, advice, sbom, etc.)

Ad: Tomorrow at 2 p.m., I will give a dedicated 
talk about software supply chain security in 
the security room.



All rights reserved

Software Supply Chain

● Dependencies : various code ecosystems
○ C (openssl, curl, CFEngine, etc.)

○ Scala/Java

○ Rust

○ F#

○ Elm

○ Javascript

○ Python

○ Perl

○ etc.



All rights reserved

Software Supply Chain

Upgrade strategy (7.0+)

● Stricter version of our previous workflow

● Upgrade all our dependencies for every minor version (at least to a supported 

patch release)

● In practice, every 6 months

● This allows reacting faster to security problems (in addition to the bug fixes)

● Document and study exceptions



All rights reserved

Software Supply Chain

Upgrade strategy

● Frontend code has been lacking in this regard

● AngularJS is a good example

● Starting from 7.3, proper package manager to improve upgrade process



All rights reserved

Software Supply Chain

Known vulnerabilities monitoring

● Started in 2020

● Incrementally extended

● Now covers full scope



All rights reserved

Software Supply Chain

Security monitoring

● Manual (oss-security ML, etc.)

● Automated when possible

● Runs daily
○ Evaluate every alert quickly

○ Either:

■ Ignore if not affected

■ Upgrade and publish according to our standard patch releases

■ Handle as Rudder vulnerability if serious

● e.g. a serious vulnerability in local user authentication (bcrypt brute-forcing)



All rights reserved

Software Supply Chain

Security monitoring

● Dedicated tools for (almost) each ecosystem

● Needs a specific integration



All rights reserved

Software Supply Chain

Are we SBOM yet? Gives information to the end-user.

● Automated SBOM or nothing

● We have the required pieces
○ All dependencies versions known at build time

● A few tricky points
○ Plugins

○ Immature ecosystem in general



All rights reserved

Infrastructure

● Bare-metal build systems

● Cloud and specific (e.g. AIX) hosting

● Ephemeral build environments

● Docker containers
○ Weekly upgrade, only official containers

○ Set as many components versions as possible

● Dedicated signature server (packages & plugins)

● Improved credentials management



All rights reserved

Software Supply Chain

Security monitoring & remediation

● We need it for the build infra and tooling too!



All rights reserved

Documentation

● Documentation should include best-practices
○ Avoid examples with a copy-paste command creating an “admin” user with the “admin” password

● Hardening documentation
○ Advice for stuff not includable in the default settings



Dev Team Culture & Processes



All rights reserved

Team Culture

● Regular internal training
○ In 2022:

■ General code security best practices

■ Frontend security

● Raising security topics awareness

● Systematic security assessment of new features/changes



Questions?


