Have you hardened your
Kubernetes
infrastructure?

Hardik Vyas
Product Security @Red Hat




Agenda

Pod and Container Security

Network Separation and Hardening
Authentication and Authorization

Log Auditing

Upgrading and Application Security practices



Pod and Container Security

Configure Security Context for a Pod or Container

Protecting Pod service account tokens

Set resource policies for Memory and CPU

Enable Seccomp and AppArmor or SELinux with appropriate profile

Appropriate Pod Security Standards policy is applied for all namespaces and enforced
Images: building, configuring and pulling



A few container SecurityContext and PodSecurityContext fields to start with:

runAsUser

runAsGroup

runAsNonRoot

privileged
allowPrivilegeEscalation
readOnlyRootFilesystem
capabilities

The above bullets are not a complete set of security context settings, please refer below for a comprehensive list:

https://kubernetes.io/docs/reference/generated/kubernetes-api/vl.26/#securitycontext-vl-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/vil.26/#podsecuritycontext-vi-core



https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.26/#securitycontext-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.26/#podsecuritycontext-v1-core

Specification for illustration purpose only:

apiVersion: vl
kind: Pod
metadata:
name: demo
spec:
serviceAccountName: demo-sa
automountServiceAccountToken: false
securityContext:
runAsUser: 2000
runAsGroup: 4000
containers:
- name: demo-container
image: demo-image:latest
securityContext:
runAsUser: 3000
privileged: false
allowPrivilegeEscalation: false
capabilities:
drop:
- all
add: [“NET_ADMIN”, “SYS_TIME”]
readOnlyRootFilesystem: true
volumeMounts:
- mountPath: /writeable/location/here

name: volName



Specifying a memory request and a memory limit:

apiVersion: vl
kind: Pod
metadata:

name: memory-demo

namespace: memory-example

spec:

containers:

- name: memory-demo
image: demo/image
resources:

limits:

memory: "100Mi"
requests:

memory: "50Mi"



Images

e Minimize unnecessary content in container images

o Building a container from scratch or bare minimal base images
e Always pull latest image from a private or trusted registry
e Container images are configured to be run as unprivileged user

o Configure Dockerfile to include:

RUN useradd <userl> && groupadd <groupl>
USER <userl>:<groupl>

e Container images are regularly scanned during creation and in deployment for known
vulnerabilities, misconfigurations and outdated libraries
o CI/CD pipeline



Network Separation and Hardening

e Use network policies and firewalls to separate and isolate resources
o ingress and egress network policies are applied to all workloads in the cluster
o default network policies within each namespace, selecting all pods, denying everything, are in place
(i.e., create an explicit deny network policy)
o the Kubernetes API, kubelet APl and etcd are not exposed publicly on Internet
e Secure the control plane
o lock down access to control plane nodes using a firewall and role-based access control (RBAC)
o use authenticated, encrypted communications using TLS certificates
o use separate networks for the control plane components and nodes
o limit access to the Kubernetes etcd server

e Encrypt traffic and sensitive data (such as Secrets) at rest
o encrypt etcd at rest and use a separate TLS certificate for communication

o place all credentials and sensitive information encrypted in Kubernetes Secrets rather than in
configuration files or ConfigMaps



The following example is a network policy to limit access to the nginx service to Pods with the label

access.

apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy
Metadata:
name: access-nginx
Spec:
podSelector:
matchLabels:
app: nginx
Ingress:
- from:
- podSelector:
matchLabels:
access: "true"

A default deny all ingress policy:

apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy

metadata:
name: deny-all-ingress
spec:
podSelector: {}
policyType:
- Ingress

A default deny all egress policy:

apiVersion: networking.k8s.io/v1l
kind: NetworkPolicy

metadata:
name: deny-all-egress
spec:
podSelector: {}
policyType:

- Egress



Authentication and Authorization

e Use strong user authentication
o supports X509 Client Certs, OpenlID Connect Tokens, Bearer Tokens, etc
e Disable anonymous access (enabled by default)
o start the kubelet with the --anonymous-auth=false flag
e Create RBAC policies with unique roles for users, administrators, developers, service
accounts, and infrastructure team
o only permissions explicitly required for their operation should be used
o avoid providing wildcard permissions when possible, especially to all resources
o avoid adding users to the system:masters group

10



Log Auditing

e Enable audit logging (disabled by default)

e Persist logs to ensure availability in the case of node, Pod, or container-level failure

e Configure logging throughout the environment (e.g., cluster API, audit event logs,
cluster metric logs, application logs, Pod seccomp logs, repository audit logs, etc.)

e Aggregate logs external to the cluster

e Implement a log monitoring and alerting system tailored to the organization’s cluster

11



For a rule to be considered valid, it must specify one of the four audit levels:

e None

e Metadata

e Request

e RequestResponse
Example:

apiVersion: audit.k8s.io/v1l
kind: Policy
rules:

- level: Metadata

[...]

12



Within the Kubernetes environment, some events that administrators should monitor/log
include the following:

API request history

Performance metrics

Resource consumption

Deployments

Operating system calls

Protocols, permission changes

Network traffic

Pod scaling

Volume mount actions

Image and container modification

Privilege changes / Modifications to RBAC resources

Scheduled job (cronjob) creations and modifications
13



Upgrading and Application Security practices

Keep up with patches, updates, and upgrades

Perform periodic vulnerability scans and penetration tests

Uninstall any old unused components

Switch to alternatives where any software is no longer maintained or deprecated

14



References:

e NSA & CISA Kubernetes Hardening Guide

e Kubernetes Documentation

15


https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://kubernetes.io/docs/concepts/security/

Thank you



