
Have you hardened your
Kubernetes

infrastructure?

Hardik Vyas
Product Security @Red Hat

Agenda

● Pod and Container Security
● Network Separation and Hardening
● Authentication and Authorization
● Log Auditing
● Upgrading and Application Security practices

2

Pod and Container Security

● Configure Security Context for a Pod or Container
● Protecting Pod service account tokens
● Set resource policies for Memory and CPU
● Enable Seccomp and AppArmor or SELinux with appropriate profile
● Appropriate Pod Security Standards policy is applied for all namespaces and enforced
● Images: building, configuring and pulling

3

A few container SecurityContext and PodSecurityContext fields to start with:

● runAsUser

● runAsGroup

● runAsNonRoot

● privileged

● allowPrivilegeEscalation

● readOnlyRootFilesystem

● capabilities

The above bullets are not a complete set of security context settings, please refer below for a comprehensive list:

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.26/#securitycontext-v1-core

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.26/#podsecuritycontext-v1-core

4

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.26/#securitycontext-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.26/#podsecuritycontext-v1-core

apiVersion: v1
kind: Pod
metadata:
 name: demo
spec:
 serviceAccountName: demo-sa
 automountServiceAccountToken: false
 securityContext:
 runAsUser: 2000
 runAsGroup: 4000
 containers:
 - name: demo-container
 image: demo-image:latest
 securityContext:
 runAsUser: 3000
 privileged: false

 allowPrivilegeEscalation: false

 capabilities:

 drop:

 - all

 add: [“NET_ADMIN”, “SYS_TIME”]

 readOnlyRootFilesystem: true

 volumeMounts:

 - mountPath: /writeable/location/here

 name: volName

[…]

Specification for illustration purpose only:

5

6

apiVersion: v1
kind: Pod
metadata:
 name: memory-demo
 namespace: memory-example
spec:
 containers:
 - name: memory-demo
 image: demo/image
 resources:
 limits:
 memory: "100Mi"
 requests:
 memory: "50Mi"

Specifying a memory request and a memory limit:

Images

● Minimize unnecessary content in container images
○ Building a container from scratch or bare minimal base images

● Always pull latest image from a private or trusted registry
● Container images are configured to be run as unprivileged user

○ Configure Dockerfile to include:

RUN useradd <user1> && groupadd <group1>

USER <user1>:<group1>

● Container images are regularly scanned during creation and in deployment for known
vulnerabilities, misconfigurations and outdated libraries
○ CI/CD pipeline

7

Network Separation and Hardening
● Use network policies and firewalls to separate and isolate resources

○ ingress and egress network policies are applied to all workloads in the cluster
○ default network policies within each namespace, selecting all pods, denying everything, are in place

(i.e., create an explicit deny network policy)
○ the Kubernetes API, kubelet API and etcd are not exposed publicly on Internet

● Secure the control plane
○ lock down access to control plane nodes using a firewall and role-based access control (RBAC)
○ use authenticated, encrypted communications using TLS certificates
○ use separate networks for the control plane components and nodes
○ limit access to the Kubernetes etcd server

● Encrypt traffic and sensitive data (such as Secrets) at rest
○ encrypt etcd at rest and use a separate TLS certificate for communication
○ place all credentials and sensitive information encrypted in Kubernetes Secrets rather than in

configuration files or ConfigMaps

8

The following example is a network policy to limit access to the nginx service to Pods with the label
access:

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

Metadata:

 name: access-nginx

Spec:

 podSelector:

 matchLabels:

 app: nginx

 Ingress:

 - from:

 - podSelector:

 matchLabels:

 access: "true"

A default deny all ingress policy:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: deny-all-ingress
spec:
 podSelector: {}
 policyType:
 - Ingress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: deny-all-egress
spec:
 podSelector: {}
 policyType:
 - Egress

A default deny all egress policy:

9

Authentication and Authorization

● Use strong user authentication
○ supports X509 Client Certs, OpenID Connect Tokens, Bearer Tokens, etc

● Disable anonymous access (enabled by default)
○ start the kubelet with the --anonymous-auth=false flag

● Create RBAC policies with unique roles for users, administrators, developers, service
accounts, and infrastructure team
○ only permissions explicitly required for their operation should be used
○ avoid providing wildcard permissions when possible, especially to all resources
○ avoid adding users to the system:masters group

10

Log Auditing

● Enable audit logging (disabled by default)
● Persist logs to ensure availability in the case of node, Pod, or container-level failure
● Configure logging throughout the environment (e.g., cluster API, audit event logs,

cluster metric logs, application logs, Pod seccomp logs, repository audit logs, etc.)
● Aggregate logs external to the cluster
● Implement a log monitoring and alerting system tailored to the organization’s cluster

11

For a rule to be considered valid, it must specify one of the four audit levels:

● None
● Metadata
● Request
● RequestResponse

Example:

12

apiVersion: audit.k8s.io/v1
kind: Policy
rules:
- level: Metadata

[...]

Within the Kubernetes environment, some events that administrators should monitor/log
include the following:

● API request history
● Performance metrics
● Resource consumption
● Deployments
● Operating system calls
● Protocols, permission changes
● Network traffic
● Pod scaling
● Volume mount actions
● Image and container modification
● Privilege changes / Modifications to RBAC resources
● Scheduled job (cronjob) creations and modifications

13

Upgrading and Application Security practices

● Keep up with patches, updates, and upgrades
● Perform periodic vulnerability scans and penetration tests
● Uninstall any old unused components
● Switch to alternatives where any software is no longer maintained or deprecated

14

References:

● NSA & CISA Kubernetes Hardening Guide
● Kubernetes Documentation

15

https://media.defense.gov/2022/Aug/29/2003066362/-1/-1/0/CTR_KUBERNETES_HARDENING_GUIDANCE_1.2_20220829.PDF
https://kubernetes.io/docs/concepts/security/

Thank you

16

