
Using Nix to generate Docker images
and why prefer it over Dockerfiles

https://functional.cafe/@yvan

What’s Nix again?

Nix is a package manager and a configuration language (pure and
lazy) that describes a package or a developer environment as the
complete list of its dependencies.

By complete list of its dependencies, it means it fetchs (and locks)
recursively the whole tree of anything you need to build a given
package.

Nix puts everything in a big /nix/store, so packages can share
dependencies, and at the same time you could have, e.g., 2
conflicting glibc versions on your machine.

Nix introduces patchelf1 to control the path of every dynamic
library that would depend on a binary!

1https://github.com/NixOS/patchelf

So, one .nix file (hermetic) means one perfectly reproducible
developer environment.

let hash = "9402c27069da5c5217648ec9cfe6d437aeadb79d";
in { pkgs ? import (fetchTarball

"https://github.com/NixOS/nixpkgs/archive/${hash}.tar.gz")
{ } }:

pkgs.mkShell {
buildInputs = [

pkgs.python3
];

}

It will ALWAYS output Python 3.10.9!

Docker (I will not introduce it) on the other hand has a
Dockerfile format:

FROM alpine:3.14

RUN apk add --no-cache python3

CMD ["python" "--version"]

You can build one image with a Dockerfile! But running docker
build later may produce a different image.

So, you have to distribute the image (that could be heavy) rather
than the Dockerfile to ensure reproducibility …

Do you know there is a Nix docker image? 2

You could enter a Nix environment in it!

2https://hub.docker.com/r/nixos/nix

FROM nixos/nix

RUN nix-shell --pure -p python3 -I \
nixpkgs="https://github.com/NixOS/nixpkgs/archive/\

9402c27069da5c5217648ec9cfe6d437aeadb79d.tar.gz"

CMD ["python" "--version"]

But, the size of our image is 1.2Gb …

Docker images have a state, that could be mutated, sometimes
nobody knows how to rebuild a modified image …

However, we can do better: generate docker image out of Nix file!

The image will not contain Nix or any package manager, it will
actually contain only what it really needs to run, so it could be
smaller than Alpine ;)

let hash = "9402c27069da5c5217648ec9cfe6d437aeadb79d";
in { pkgs ? import (fetchTarball

"https://github.com/NixOS/nixpkgs/archive/${hash}.tar.gz")
{ system = "x86_64-linux"; } }:

pkgs.dockerTools.buildImage {
name = "my-image";
config = { Cmd = ["${pkgs.python3}/bin/python"]; };

}

Now our image size is 53.5Mb! (VS 52.4Mb for Alpine Linux)

N.b. Nix also support layered images, and can even stream them!

Is it hard to turn an existing Dockerfile into a Nix expression?

Yes, it’s switching from an imperative model to a declarative one …

But I’m starting to experiment with an interactive CLI that would
help user to step by step do the rewriting.

Please ping me if that would be something that interest you!

Thank you

impressive is the ignite talk CLI tool suggested by CfgMgtCamp
organizer:

nix-shell -p impressive
error: impressive has been removed due to lack of
released python 2 support and maintainership in nixpkgs

It’s so easy to contribute to nixpkgs (~ 5000 contributors), give it
a try!

