

Making Ansible Making Ansible
playbooks to configure playbooks to configure
Single-Sign-On for Single-Sign-On for
popular open source popular open source
applicationsapplications

Who am I?

●Jeroen Baten (English/Spanish: Yerun)
●Job title : Open Source expert @ Chateau IT
●Author of 12 books (4 more in beta)
●Dad of 5 girls
●(former) volunteer fire fighter
●Scouting
●Trainer, teacher, hacker

What do I do?
● Open source consultancy
● Teaching/training

(Python, Web, Linux, Zabbix, etc)
● Chateau IT: job retraining, from X to IT

● Whatever your background, if you want
to switch to a carreer in IT, contact me
jeroen@chateau-it.nl

Another project
● LibrePlan
● Web-based project management appl.
● Very cool!
● www.LibrePlan.dev

Let me start with
apologies first...
Talking the same language… can still cause a culture clash.
With respect to the code of conduct:
Please forgive me where applicable.
(Tip: Dutch people take every English text literally!)

The project in short
● Build IT landscape @ company and copied for

other company in the group.
● Foundation: Proxmox, FreeIPA LDAP
● Installed applications Xwiki, Zabbix, Jenkins,

Nextcloud, GitLab, Odoo, CMDBuild etc in separate
vm’s.

● Got question how to upgrade the landscape.
● So I proposed to make everything SSO using

Ansible playbooks.
● And so our adventure started...

Basic Lingo
● Application that uses SSO = SP

● Service (because application) provider
● Application that does SSO = IdP

● Identity provider, in our case: Keycloak
● ACS: Assertion Consumer Service URL (SP sign-in

URL)
● Ansible

● Language to write configuration recepies
● JSON

● The only good thing that came from JavaScript :-)

Basic SSO process flow
● User clicks ‘login’ on some application (SP)
● Browser of user is redirected to IdP (Keycloak)
● User is presented with login widget
● User logs in (successfully) or error/denied message.
● If not yet 2FA configured but set as mandatory he/she gets

2FA setup dialog.
● Browser of user is redirected to SP with some credentials

proven he has successfully logged in at IdP.
● User is logged in.
● Every other application login redirects to IdP.
● IdP sees existing ticket of user and redirects immediately

with authentication info.

Basic SSO setup
● User-id’s in FreeIPA
● Keycloak for web SSO server, syncs with

FreeIPA
● Keycloak has a client definition for every

connected application
● Added first application (Xwiki)

● This was a walk in the park, good
documentation.

● Added another application, etc.

Keycloak clients list

● Let’s have a look at the program flow

Ansible playbook flow
● Two Ansible variable files: Global-vars and encrypted-

vars
● Playbook works on application vm
● Playbook retrieves Keycloak endpoint info
● Playbook checks if Keycloak client exists, if yes, deletes
● Playbook fills client definition template and uploads to

Keycloak
● Checks if client created successfully
● Downloads shared secret if relevant (open-idc)
● Ansible leaves you with a configured application
● Displays remaining manual tasks, if any.

Ansible SAML example:
Zabbix
● Read global vars, Read encrypted content
● Download Zabbix 5.4 repo package for Ubuntu 20.04, install 5.4 repo list,
● Install all needed packages
● Configure zabbix database password
● Setup Zabbix Postgresql database user, Setup Zabbix Postgresql database, Load initial Zabbix dataset when db just created
● Make SSL dir for nginx, Copy SSL key and cert to ssl dir, Install nginx config file
● Generate key on Zabbix server
● Retrieve token url from Keycloak server, Store url for easier retrieval, Retrieve endpoint info for our realm {{ realm }}, Store

authorization_endpoint for faster retrieval, Store token_endpoint for faster retrieval
● Store userinfo_endpoint for faster retrieval, Retrieve authentication token from token-service url, Store access token into variable for

easier retrieval
● Retrieve IDP metadata descriptor to use the 509 formatted certificate, Save IDP XML metadata to file for processing
● Run xmlstarlet to retrieve X509Certificate, Store output in certificate variable
● Create idp.crt file
● Retrieve current list of clients and search for already existing "{{ zabbix_client_id }} "
● Find ID in returned json
● copy remote ssl files to remote /tmp, Remove first line from tmp files, Retrieve remote ssl cert, Retrieve remote ssl key
● Delete client id "{{ zabbix_client_id }}" if it already exists.
● Convert Ninja template to variable
● Upload JSON template file to create new Client ID on Keycloak server
● If all went well we now have a location of the newly created Client ID
● (Re)start Zabbix server
● (Re)start Nginx server
● Post-install message IT IS IMPORTANT TO READ THIS

Ansible JSON tricks
● "baseUrl": "{{ zabbix_server_url }}",
● "adminUrl": "{{ zabbix_server_url }}/index_sso.php?acs", ← application specific Acs
● "saml_single_logout_service_url_redirect": "{{ zabbix_server_url }}/index_sso.php?sls", ← application specific
● "id": "{{ lookup('community.general.random_string', length=20) | to_uuid }}",
● "saml.signature.algorithm": "RSA_SHA256",
● "saml.signing.certificate": "{{ sp_crt.stdout }}",
● "saml.signing.private.key": "{{ sp_key.stdout }}",
● "saml_force_name_id_format": "true",
● "saml_name_id_format": "username", "user.attribute": "email",
● Template sent to Keycloak has random ID´s

● "protocolMappers": [{
● "id": "{{ lookup('community.general.random_string', length=20) | to_uuid }}",
● "name": "zabbixuser",
● "protocol": "saml",
● "protocolMapper": "saml-user-attribute-mapper",
● "consentRequired": false,
● "config": {
● "user.attribute": "email",
● "friendly.name": "email",
● "attribute.name": "email"

● "saml.multivalued.roles": "false",
● "name": "role list",

Do-it-yourself (DIY)
● Once you have a working SSO setup:

● Use contrib/get-keycloak-client-list.sh
● Redirect to file
● Cut out working client definition
● Pipe through jq program
● Start replacing settings with variables
● Tool: diff <(jq --sort-keys . $1) <(jq --sort-

keys . $2)

Gotchas
● Everything works better when using httpS(!)
● Tomcat expects ssl keystore to have password ‘changeit’
● Some application developers can’t read. If the standard

says ‘optional’ that is NOT the same as ‘mandatory’.
● (Some/all) applications are very badly documented.
● Adding FreeIPA → Keycloak user-id sync midway was not

a smart idea.
● Ansible can solve just about any problem
● Do NOT use Keycloak 18.x.y

● unless you like long searches why roles don’t work

Your job
(if you chose to accept
it)
● Git pull

https://github.com/onesteinbv/Project_Singl
e_Sign_On

● For SAML start with Zabbix playbook
● For OpenID Connect start with Xwiki

playbook
● Tweak and tune to a working config
● Submit a PR for YOUR application!

Questions for me?: jeroen@chateau-it.nl

Thank you for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

