
securing the software supply chain of
infra management tools

7th feb. 2023
Alexis Mousset

whoami

sysadmin background

lead system developer @rudder

secure code working group @rust-lang

vulnerabilities database for Rust libraries

security-related tooling

2

infra management software

runs everywhere

whether with an agent or remote connections

high privileges

often acts as glue

cross technologies to adapt to what we configure

3

infra management software

complex software

other remote admin access are simpler (openssh , etc.)

highly connected to other infra parts

big attack surface

dependencies

4

infra management software

this makes these software targets of attacks

classic vulnerabilities

exploitation of a bug in the program

authentication bypass

etc.

we are not talking about these

5

where does infra software come
from?

6

software supply chain

developer

repository build distribu�on user

dependencies

7

developer
8

developer

working on the project/for the company

a workstation

various credentials

recent Circle CI breach

out of scope here, but needs special attention

9

developer

dependencies

10

dependencies

open-source building blocks are now everywhere

various ecosystems

11

other developers

(a lot)

12

who has (indirect) push rights to
software?

every one that has push and release access to all your
dependencies

you can't audit all dependencies

can only be a heuristic or a community effort

more and more package managers and dependencies sources

less reliant on system dependencies

13

estimates on Rudder

Rust

cargo supply-chain allows visualizing the dependencies
maintainers

Our node/server communication daemon lists:

140 individuals

34 Github teams

14

attacks/vulnerabilities on
dependencies

increasing in the latest years

huge potential

15

you may have heard of...

log4shell

RCE in log4j, a popular Java logging library

revealed that nobody really knows what they are running

openssl

16

how hard can it be?

event-stream , popular npm package (1.2k stars on github)

release including code to steal crypto ledgers on dev machines

17

18

Rust side

various attacks on crates.io

typosquatting rustdecimal instead of rust_decimal

attack against Gitlab CI

19

what do we learn from this?

good: people are generally nice to each other!

bad: it is basically our only protection

20

developer

repository

21

repository

22

repository

not the easiest channel

still a lot of deploy keys/SSH keys without passwords in the wild

23

repository

reviews

protected branches

to force a review and make changes visible

24

developer

repository build

dependencies

25

build process & infra

setup a build environment

containers, VM, etc.

either SaaS or hosted

download all sources

our code

dependencies from various channels

build

push artifacts

26

build process & infra

SolarWinds

Monitoring software Orion infected with malware

attack through the build platform

installed on persistent builder systems

modified the sources at build time, hard to detect

attacks on CI platforms

circleCI

Gitlab CI

27

build process & infra

build environments are critical assets

security monitoring and update policies

for sources

lock files (i.e. include the dependency' source hash in the
repository)

signatures check

28

developer

repository build distribu�on

dependencies

29

distribution

generally correctly done!

signatures (rpm, dpkg, msi, etc.)

30

developer

repository build distribu�on user

dependencies

31

what do users need?

visibility

trust (integrity)

32

how to reach these goals?

33

aside: OpenSSF

Open Source Security Foundation

affiliated with the Linux Foundation

created in August 2022

merges several previous efforts

34

visibility

35

identifying software

the first problem with visibility is the ability to identify software.

we are used to "CPE", used in CVEs

It is not enough

SWID and purl

36

purl

uniform identifier for software

good for upstream stuff

37

pkg:deb/debian/curl@7.50.3-1?arch=i386&distro=jessie
pkg:docker/cassandra@sha256:244fd47e07d1004f0aed9c
pkg:gem/ruby-advisory-db-check@0.12.4
pkg:github/package-url/purl-spec@244fd47e07d1004f0aed9c
pkg:golang/google.golang.org/genproto#googleapis/api/annotations

38

SWID

better for downstream

NIST/SCAP

usable in CVEs

39

<SoftwareIdentity
 xmlns="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://standards.iso.org/iso/19770/-2/2015/schema.xsd"
 xml:lang="en-US"
 name="Red Hat Enterprise Linux"
 tagId="com.redhat.RHEL-8-x86_64"
 tagVersion="1"
 version="8"
 versionScheme="multipartnumeric"
 media="(OS:linux)">

40

how to list software?

Software Bill of Materials

list of ingredients (components and versions)

41

SPDX

first open-source oriented SBOM

started around 2010

focused on license compliance initially

included standardized license identifiers

headers

42

CycloneDX

from OWASP, in 2017

security-oriented

goes beyond SBOM

HBOM (hardware), OBOM (operations), etc.

vulnerability management: VDR, VEX

43

vulnerability tracking

CVE historically

44

OSV

Open Source Vulnerability

CVE is not enough for everything

software badly identified

often useless scoring

a format spec

a database centralizing information from different ecosystems

45

vulnerability tracking at ecosystem
level

a database for each language

Github efforts

security tooling

dependabot

46

integrity

source, build and artifact

signing distributed binaries is good, and already well deployed

...but absolutely not enough!

47

sigstore

tooling to sign and check signatures of artifacts

Attend next talk for more details!

48

what can we do?

we started hearing about these topics ten years ago

only starting to actually exist now

49

what can we do?

the problem space is huge

the cost is potentially huge

we need to prioritize and focus

50

pronounced "salsa"

Supply chain Levels for Software Artifacts

originally from Google, now under the OpenSSF umbrella

framework providing checklists with levels

51

SLSA

the goal is to help list and prioritize

not transitive

52

53

SLSA level 1

"The build process must be fully scripted/automated and generate
provenance."

visibility but no integrity

allow the end user to make risk-based security decisions

no protection against tampering

54

SLSA level 2

"Requires using version control and a hosted build service that
generates authenticated provenance."

55

SLSA level 3

"The source and build platforms meet specific standards to
guarantee the auditability of the source and the integrity of the
provenance respectively."

auditors certify that platforms meet the requirements

56

SLSA level 4

"Requires two-person review of all changes and a hermetic,
reproducible build process."

57

where are we at?

58

rudder

A lot of ecosystems

Scala/Java (maven-based)

Elm (dedicated tooling)

Rust (cargo/crates.io-based)

F# (dotnet/nuget-based)

JavaScript (npm-based)

C

Perl (cpan-based)

Python (pip-based) 59

rudder

visibility

dependency management

SBOM?

vulnerability scanning

integrity

only at distribution level

60

rudder

build security and reproducibility improvements

next step: aggregated SBOM

continue making the build more deterministic and hermetic

61

rust

vulnerability tracking: okayish

SBOM: early days

storing SBOM in binaries: cargo-auditable

still a lot to do on crates.io

2FA, sigstore, etc.

exploring trust: cargo-crev , cargo-vet

62

conclusion

mostly driven by enterprise & government needs

might lead to complex solutions

far too many acronyms (i've spared you a lot of them)

the supply chain security ecosystem is still quite immature

competing norms, technologies, etc.

continuous changes

63

conclusion

but we can't ignore it, at all levels

open source ecosystems

software editors

end users, especially in critical contexts

we are all software editors

64

references

Open Source Security Foundation (OpenSSF, Linux Foundation)

SLSA

OSV

sigstore

OWASP Foundation

CycloneDX

PBOM.dev

OSC&R: Open Software Supply Chain Attack Reference
65

https://openssf.org/
https://owasp.org/
https://pbom.dev/

references

Chainguard

Aqua Security

open-source tooling: Trivy

Anchore

Grype, Sift

OmniBOR

Artifact Dependency Graph

66

https://www.chainguard.dev/
https://www.aquasec.com/
https://anchore.com/
https://omnibor.io/

questions?

amo@rudder.io

twitter.com/AlexisMousset

mastodon.social/@amousset

67

mailto:amo@rudder.io
https://twitter.com/AlexisMousset
https://mastodon.social/@amousset

