
@tdpauw@mastodon.social thinkinglabs.io@tdpauw@mastodon.social thinkinglabs.io

Feature Branching is Evil
Thierry de Pauw | consulting CTO

takes questions at the end of the session

Ghent, Belgium
On the left, Korenlei
On the right, Graslei

http://thinkinglabs.io/
http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Being vulnerable …

I’m shy and introverted

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

A tale of 2 teams

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

“Like all powerful tools, there are many ways you can use them
(DVCS), and not all of them are good.”
-- On DVCS, continuous integration, and feature branches, Jez Humble

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

-- 2016 State of DevOps Report

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Some definitions ...

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Mainline is the line of development
which is the reference from which the
builds of your system are created that feed
into your deployment pipeline.
-- Jez Humble

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Feature Branching is a practice where
people do not merge their code into
mainline until the feature they are working
on is "done" (but not “done done”).
-- Jez Humble

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Continuous Integration is a practice
where members of a team integrate their
work frequently - usually each person
integrates at least daily - leading to multiple
integrations per day. Each integration is
verified by an automated build […].
-- Martin Fowler

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

The goal of an Organisation is

to sustainably minimise the lead time
to create positive business impact.

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Why long-running branches ?

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

It allows us to work in isolation.
Therefore we are more productive.

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

"Developing in isolation can help an individual go faster but it does
not help a team go faster. Merge time and rework cannot be
estimated and will vary wildly, and the team can only go as fast as
the slowest merge."
-- Steve Smith

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

If a refactoring goes nowhere
we can just delete it.

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

“A spike solution is a very simple program to explore potential
solutions. Build the spike to only address the problem under
examination and ignore all other concerns. Most spikes are not
good enough to keep, so expect to throw it away.”
-- extremeprogramming.org, Don Wells

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

It allows us to control the quality of
what goes into production.

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

"The objective is to eliminate unfit release candidates as early in the
process as we can ...
You are effectively prevented from releasing into production builds
that are not thoroughly tested and found to be fit for their intended
purpose."
-- Continuous Delivery,
 Jez Humble and Dave Farley

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

It allows us to control which features
get into production.

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

"Feature Branching is a poor man's modular architecture, instead
of building systems with the ability to easy swap in and out features
at runtime/deploy-time they couple themselves to the source control
providing this mechanism through manual merging."
-- Dan Bodart

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Why is this a problem ?

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Feature Branching delays feedback.

=> Continuous Isolation

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Feature Branching
hinders integration of features.

Promiscuous Integration ???

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Feature Branching hides work
for the rest of the team.

frequently merging back to mainline
= communicating with your team

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Feature Branching works
against refactoring.

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Feature Branching creates inventory.

inventory
= money stuck in the system

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Feature Branching increases risk.

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Feature Branching creates
cognitive overload.

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

How can we avoid this ?

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Continuous Integration

Your application is always in a
releasable state on main line.

Trunk Based Development

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

always commit on Green.

decoupled code base.

lots of fast tests.

Break large changes into a set of
small incremental changes.

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Hide unfinished new functionality.

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Use Expand-Contract
when performing large refactorings.

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Feature Toggles to decouple
feature release from code deployment.

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Feature Toggles done badly are evil too !

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

A frequently asked question

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

When mature enough no Code Reviews.

Pair Programming => Continuous Code Review

post-commit review
● pre-merge: short lived branches + Pull Request
● post-merge: review all commits on mainline

How to perform Code Reviews ?

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Benefits

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

=> more frequent builds

=> more frequent deployments

=> reduced Time to Market

=> more experiments

=> uncover more unmet needs

More frequent commits to mainline

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

=> uncovers more problems earlier

=> fix problems immediately

=> build quality in

=> better Stability & Quality

More frequent builds

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

Where is the evilness ?

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

… and slow builds

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io

"Trunk-based development requires a big mindset shift. Engineers
thought trunk-based development would never work, but once they
started, they could not imagine ever going back."
-- Gary Gruver,
 Directory of Engineering for HP's LaserJet Firmware division

http://thinkinglabs.io/

@tdpauw@mastodon.social thinkinglabs.io@tdpauw@mastodon.social thinkinglabs.io

Engineer at the fintech startup Abbove.com

Founder of ThinkingLabs, advisory firm on IT delivery

Hello, I am Thierry de Pauw
is chief imposter

likes dark chocolate
dark means > 50% cacao, prefers 70% and more

Article series:
https://thinkinglabs.io/on-the-evilness-of-feature-branching

http://thinkinglabs.io/
http://thinkinglabs.io/
https://thinkinglabs.io/on-the-evilness-of-feature-branching

@tdpauw@mastodon.social thinkinglabs.io

Resources
SCM Patterns (ch 4 Mainline; ch 5 Active Development Line), Stephen Berczuk and Brad Appleton
Growing Object Oriented Software guided by Tests, p172 Keyhole Surgery for Software, Steve Freeman and Nat Pryce
Continuous Delivery (ch 14 Advanced Version Control), Jez Humble and Dave Farley
The Role of Continuous Delivery in IT and Organizational Performance, Nicole Forsgren and Jez Humble
The State of DevOps Report 2016, Alanna Brown, Nicole Forsgren, Jez Humble, Nigel Kersten and Gene Kim
DevOps Handbook (ch 11 Enable and Practice CI), Gene Kim, Jez Humble, Patrick Debois and John Willis
Accelerate (ch 4 Technical Practices), Nicole Forsgren, Jez Humbe and Gene Kim
Measuring Continuous Delivery (ch 7 The Mainline Throughput indicator), Steve Smith
trunkbaseddevelopment.com
ThoughtWorks Technology Radar on GitFlow
Continuous Integration on a dollar a day, James Shore
On DVCS and Continuous Delivery, Jez Humble
Why software development methodologies suck, Jez Humble
Don't Feature Branch, Dave Farley
Feature Branch, Martin Fowler
Version Control Stragies series, Steve Smith

http://thinkinglabs.io/
http://www.scmpatterns.com/
http://www.growing-object-oriented-software.com/
https://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2681909
https://puppet.com/resources/whitepaper/2016-state-of-devops-report
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002
https://www.amazon.com/Accelerate-Software-Performing-Technology-Organizations/dp/1942788339
https://leanpub.com/measuringcontinuousdelivery
https://trunkbaseddevelopment.com/
https://www.thoughtworks.com/radar/techniques/gitflow
http://www.jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
https://continuousdelivery.com/2011/07/on-dvcs-continuous-integration-and-feature-branches/
https://continuousdelivery.com/2012/08/why-software-development-methodologies-suck/
http://www.davefarley.net/?p=160
https://martinfowler.com/bliki/FeatureBranch.html
http://www.alwaysagileconsulting.com/articles/version-control-strategies/

@tdpauw@mastodon.social thinkinglabs.io

More Resources
More Feature Branches means less Continuous Integration, InfoQ interview with Steve Smith
The Death of Continuous Integration, Steve Smith
Long-Running Branches Considered Harmfull, Jade Rubick
An e-mail conversation with Steve Smith on Trunk Based Development
Continuous Isolation, Paul Hammant
What is Trunk Based Development ?, Paul Hammant
Trunk Based Development, Jon Arild Tørresdal
You Are What You Eat, Dave Hounslow
Google's Scaled Trunk Based Development, Paul Hammant
Legacy App Reju venation, Paul Hammant
Why Google Stores Billions of Lines of Code in a Single Repository ?, Google
The history of “Taking Baby Steps”, Adrian Bolboaca
Baby Steps TDD approach, David Völkel
4 Simple Tricks to avoid Merge Conflicts, Robert Mißbach
From GitFlow to Trunk Based Development, Robert Mißbach
Short-lived branches, Corey Haines

http://thinkinglabs.io/
https://www.infoq.com/news/2015/10/branching-continuous-integration
https://speakerdeck.com/stevesmithcd/the-death-of-continuous-integration
https://blog.newrelic.com/2012/11/14/long-running-branches-considered-harmful/
https://paulhammant.com/2017/02/14/fake-news-via-continuous-isolation/
http://paulhammant.com/2013/04/05/what-is-trunk-based-development/
https://mrdevops.io/trunk-based-development-8376fe577c11
https://vimeo.com/162625187
http://paulhammant.com/2013/05/06/googles-scaled-trunk-based-development/
http://paulhammant.com/2013/03/11/legacy-app-rejuvenation/
http://paulhammant.com/2013/03/11/legacy-app-rejuvenation/
http://m.cacm.acm.org/magazines/2016/7/204032-why-google-stores-billions-of-lines-of-code-in-a-single-repository/fulltext
http://blog.adrianbolboaca.ro/2013/01/the-history-of-taking-baby-steps/
http://www.slideshare.net/davidvoelkel/baby-steps-tdd-approaches
http://team-coder.com/avoid-merge-conflicts/
http://team-coder.com/from-git-flow-to-trunk-based-development/
http://articles.coreyhaines.com/posts/short-lived-branches/

@tdpauw@mastodon.social thinkinglabs.io

Even More Resources
Introducing Branch by Abstraction, Paul Hammant
Branch by Abstraction, Martin Fowler
Make Large Scale Changes Incrementally with Branch by Abstraction, Jez Humble
branchbyabstraction.com
Feature Toggles, Pete Hodgson
#NoStaging - Pipeline Conf 2016, Dave Nolan
When Feature Flags go Wrong, Edith Harbaugh
Managing Feature Flag Debt with Split, Adil Aijaz
Continuous Delivery and Code Review from the Continuous Delivery Google Group
Theory X and Theory Y from Wikipedia
Continuous Review, Paul Hammant
Non-Continuous Review, Paul Hammant
Code Review: Why are we doing it ?, Sandro Mancuso
Code Reviews in Trunk Based Development, Robert Mißbach
A conversation in the SoCraTes Slack #codereview channel on … Code Reviews and Trunk Based Development
A reply on Twitter by Michiel Rook regarding When code reviews would not be required

http://thinkinglabs.io/
http://paulhammant.com/blog/branch_by_abstraction.html
http://www.martinfowler.com/bliki/BranchByAbstraction.html
https://continuousdelivery.com/2011/05/make-large-scale-changes-incrementally-with-branch-by-abstraction/
https://branchbyabstraction.com
http://www.martinfowler.com/articles/feature-toggles.html
https://www.youtube.com/watch?v=lD3ZuvLFiDo
https://www.infoq.com/articles/feature-flags-gone-wrong
https://www.split.io/blog/managing-feature-flag-debt-split/
https://groups.google.com/forum/#!topic/continuousdelivery/LIJ1nva9Oas
https://en.wikipedia.org/wiki/Theory_X_and_Theory_Y
http://paulhammant.com/2013/12/05/continuous-review/
http://paulhammant.com/2014/01/10/non-continuous-reviews/
https://codurance.com/2015/09/29/codereview/
http://team-coder.com/code-reviews-in-trunk-based-development/
https://twitter.com/michieltcs/status/991666977390448640

