
Demystifying Code signing and its role in DevSecOps

February 7, 2023

Gaurav Kamathe

Introduction

● Product Security @ Red Hat
● Interests - Security, Linux, Malware, Emerging tech etc
● Correspondent @ opensource.com

@kamatheg

https://www.redhat.com/en/blog/channel/security
https://twitter.com/RedHatSecurity

https://www.redhat.com/en/blog/channel/security
https://twitter.com/RedHatSecurity

Agenda

● SLSA
● DevSecOps
● Introduction to Code signing
● How does Code signing work
● Past challenges in implementation of Code signing
● Introduction to the sigstore project
● Why use sigstore
● Conclusion

Predictions ?

“Gartner predicts that by 2025, 45% of organizations worldwide will have
experienced attacks on their software supply chains, a three-fold increase
from 2021.”

https://www.gartner.com/en/articles/7-top-trends-in-cybersecurity-for-2022
https://www.sonatype.com/state-of-the-software-supply-chain/open-source-supply-demand-security

https://www.gartner.com/en/articles/7-top-trends-in-cybersecurity-for-2022
https://www.sonatype.com/state-of-the-software-supply-chain/open-source-supply-demand-security

A (reasonable) rant

● Perfect is the enemy of good in Cybersecurity
● No Security silver bullet
● Mitigating even a single threat is still a win
● Make incremental progress
● Don’t be the clown in this meme

Credits - https://www.linkedin.com/in/danlorenc/

https://www.linkedin.com/in/danlorenc/

Supply Chain Levels for
Software Artifacts (SLSA)

SLSA (pronounced salsa)

● Security framework
● Checklist of standards and controls (Specification, not a tool)
● Prevent tampering
● Improve integrity
● Secure packages and Infrastructure
● 4 incremental levels of Assurances (higher levels = more security)

https://slsa.dev/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html

https://slsa.dev/
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html

Key terminology
Term Description Example

Artifact File produced as a result of a build pipeline Container image, compiled
binaries etc

Provenance Metadata about how an artifact was built Build process, top-level source,
dependencies

Digest Result of a cryptographic hash function Produces fixed size value to
uniquely identify artifact

Attestation Cryptographically signed file Provenance of build pipeline at
specific time

Attestor Any system or process that produces
attestation

Summary of 4 levels

Level Description Example

1 Documentation of build process Documentation, Unsigned provenance

2 Tamper resistance of build service Signed provenance, use of signatures

3 Extra resistance to specific threats Non-falsifiable provenance

4 Highest level of confidence and
trust

Two-party review

https://slsa.dev/spec/v0.1/levels

https://slsa.dev/spec/v0.1/levels

Requirements
Source code

● Version controlled
● Verifiable history
● Retention
● Two person reviewed
● etc

Software builds

● Automated
● Reproducible
● Built in isolated

environments
● Built in hermetically

sealed environments
● etc

Dependency provenance

● Authenticated by
digital signature

● Generated by build
service

● Non-falsifiable
● Complete list of

build dependencies
● etc

https://slsa.dev/spec/v0.1/requirements

Remember him ?

How SLSA could have helped.. ?

https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html

https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html

DevSecOps

DevSecOps

● Security function within the DevOps
● Defining and implementing Security policies
● Increase Security at all levels of SDLC
● Spread security responsibilities to all stakeholders
● SAST, DAST, Threat Modeling, privacy, SCA, Code signing, etc

Introduction to Code Signing

Code signing

● Process of applying a digital signature to a software binary or file
● Ties an identity (company/person) to an artifact
● Validates the identify of software author/publisher
● Verifies that the file has not been tampered/altered
● Indicator of trust for a recipient
● Tells you about Security posture of a publisher/company

How does Code signing work ?

● Public/Private key pair, Certificate Authority (CA), Digital certificate
● Signed Software - Publisher’s software, Code signing certificate, digital

certificate
● Code signing certificate - Identity and public key of the publisher, CA

verifies the identity
● Digital signature - Signed hash of software using publishers private key

https://en.wikipedia.org/wiki/Public_key_infrastructure

https://en.wikipedia.org/wiki/Public_key_infrastructure

Why Code signing ? Benefits

● Identity of developer/publisher
● Integrity of the underlying software
● Improved user confidence, promotes trust
● Proves software is not tampered/modified
● Protect fraudulent use of brand/name

Past challenges in implementation
of Code signing

Weaknesses of Code signing

● Managing security of private keys is difficult, time consuming,
expensive

● Tooling has not evolved and is still arcane
● Difficult to correctly use
● Managing key rotations
● No centralized key management
● Unable to enforce Security policies consistently
● Challenges with key compromise

Introduction to sigstore

What is sigstore ?
● Linux Foundation project
● The open source software signing service (community managed public

service)
● Enable widespread software signing; simple and ergonomic approach;

can be adopted by project of different sizes
● Make signatures and Infra “frictionless” and “invisible”
● For open source maintainers, by open source maintainers

https://www.sigstore.dev/
https://twitter.com/decodebytes
https://twitter.com/lorenc_dan

https://www.sigstore.dev/
https://twitter.com/decodebytes
https://twitter.com/lorenc_dan

Let’s Encrypt vs sigstore
“to be software signing and provenance, what Let’s encrypt is to HTTPS/SSL”

● Free certificates
● Automation tooling
● HTTPS

● Free certificates
● Automation tooling
● Signatures

sigstore components

● Fulcio - free root certification authority
● Rekor - built-in transparency and timestamping service
● Cosign - tool for signing/verifying containers (and other artifacts)
● Openid connect - identity layer

https://www.sigstore.dev/how-it-works

sigstore ecosystem

https://www.sigstore.dev/how-it-works

cosign

● Creates key pair of public and private keys
● Uses private key to create a digital signature of artifacts
● Artifacts like containers etc
● Easy for developers as identity associated with (say Github, Google)
● Which in turn avoid storing the private key

https://github.com/sigstore/cosign

https://github.com/sigstore/cosign

fulcio

● Free to use CA for issuing code signing certificates
● Binds public keys to email addresses using OpenID connect
● Serves as a trusted third party
● Issues short-lived signing certificates
● Commits certificates to transparency log
● Consumers can verify the software artifacts

https://github.com/sigstore/fulcio

https://github.com/sigstore/fulcio

rekor

● Transparency and timestamp service for signed artifacts
● Used as storage of artifact metadata
● Immutable data log that stores signed metadata about artifacts
● Provides transparency for signatures
● Allows community to monitor and detect tampering
● Make informed decisions on trust and non-repudiation of an object’s

lifecycle
https://github.com/sigstore/rekor
https://github.com/google/trillian

https://github.com/sigstore/rekor
https://github.com/google/trillian

Usage/Example ?
Sign (creates .sig, .crt, .rekor files)

● $ python -m pip install sigstore
● $ echo “demo” > cfgmgmt2023
● $ sigstore sign cfgmgmt2023 (Needs OIDC signing)

Verify

● $ sigstore verify identity cfgmgmt2023 –cert-identity <email>
–cert-oidc-issuer <Github/Google/etc>

https://github.com/sigstore/sigstore-python

https://github.com/sigstore/sigstore-python

Why use sigstore

Why ?

● Managing keys is painful and insecure
● Makes Code signing and verification easy
● Thriving open source community
● More and more communities adopting sigstore

sigstore adoption

https://blog.sigstore.dev/kubernetes-signals-massive-adoption-of-sigstore-for-protecting-open-source-ecosystem-73
a6757da73
https://www.python.org/download/sigstore/
https://internals.rust-lang.org/t/pre-rfc-using-sigstore-for-signing-and-verifying-crates/18115

https://blog.sigstore.dev/kubernetes-signals-massive-adoption-of-sigstore-for-protecting-open-source-ecosystem-73a6757da73
https://blog.sigstore.dev/kubernetes-signals-massive-adoption-of-sigstore-for-protecting-open-source-ecosystem-73a6757da73
https://www.python.org/download/sigstore/
https://internals.rust-lang.org/t/pre-rfc-using-sigstore-for-signing-and-verifying-crates/18115

Thank you

References

● https://www.sigstore.dev/
● https://github.com/sigstore
● https://training.linuxfoundation.org/training/securing-your-software-su

pply-chain-with-sigstore-lfs182x/
● https://openssf.org/community/sigstore/
● https://blog.trailofbits.com/2023/01/13/sigstore-python/

https://www.sigstore.dev/
https://github.com/sigstore
https://training.linuxfoundation.org/training/securing-your-software-supply-chain-with-sigstore-lfs182x/
https://training.linuxfoundation.org/training/securing-your-software-supply-chain-with-sigstore-lfs182x/
https://openssf.org/community/sigstore/
https://blog.trailofbits.com/2023/01/13/sigstore-python/

