
© betadots GmbH 2024© betadots GmbH 2024

Why does THIS node
have THAT config?

Martin Alfke
<ma@betadots.de>

© betadots GmbH 2024

Martin Alfke
CEO/Consultant/Trainer at betadots GmbH
Berlin, Germany

• Puppet Trainer and Puppet Solution Engineer
• Platform Engineering, Consulting and Training
• Agile methods, Scrum
• tuxmea (Twitter, GitHub, Slack)

© betadots GmbH 2024

Why does THIS node have THAT config?

or "How to do Hiera in Puppet and how to analyze data"

Most IT infrastructure consists of several nodes in different stages with different
use cases.

Some configurations are identical, whereas others must be different.

Within Puppet one can store these information differences in different files and
directories as data in YAML structure.

Puppet uses a built in data lookup tool (Hiera) to identify data location and read
data values.

© betadots GmbH 2024

Why does THIS node have THAT config?

Why are systems different?

- prod servers must use prod db, dev servers must use dev db

- servers in network zone G use different DNS

- one of the load balanced web servers has an additional local script

There are many reasons why a systems configuration differs compared to another
system.

With Puppet one can implement these differences as Hiera data.

© betadots GmbH 2024© betadots GmbH 2024

Hiera Basics

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

In general Hiera supports different data backends.

Just be sure that data lookups occur very often and that long data lookup timings
will result in higher load on your Puppet server.

Therefore it is recommended to have a very fast data backend.

The fastest backend is local files in YAML (https://yaml.org/) or JSON
(https://json.org/) syntax.

https://yaml.org/
https://json.org/

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

Hierarchies are a directory/file structure.

This structure must be built from most individual to most generic layer.

Layers are indicators for configuration differences.

From our example:

- one node = fqdn/certname

- prod/dev = stage

- network zone G = zone

- global

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

We can now view these layers as sheets with information.

On the ground we place the global sheet.

Then we add the zone sheet above the global sheet.

The zone sheet can show the information from the global sheet, extend global
information or overwrite global information.

Same happens with all the remaining layers.

Now hiera looks from top and reads the data it sees.

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

When comparing with the IT infrastructure, we see that global layer covers all
nodes within a single file, whereas the node layer is based on one file per host.

Just to be sure: You don't need to provide all files, only the ones where you have
differences.

We are now aware that on node layer multiple files might be needed.

Besides this a more clear directory structure makes it easier to identify file usage.

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

we structure our layers inside directories:

 nodes/
 certname
 apps/
 application-stage
 app/
 application
 zone/
 zone
 global

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

But what about differences?

Each node has its own set of Puppet Facts.
With 'facter' information are collected on the node and send to Puppet server.

Within Puppet code one can access these facts.
Access to facts is also possible from hiera.

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

The most important tasks are to identify

- why nodes differ and
- if nodes with same configuration can be grouped and
- if you can provide a name for the group.

Within the hiera configuration file (hiera.yaml) we can access Puppet variables
using another syntax compared to Puppet code.

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

On each layer we can use facter variables. For the node layer we can use the FQDN
which is %{facts.networking.fqdn}. Within Puppet it is even better to use
%{trusted.certname} instead.

For applications we can extend facter either by external facts or by custom facts or the
usage of csr_attributes is possible.
We recommend to prefix self written facts with the company name or shortname:

Application: %{betadots_facts.application} oder
%{trusted.extension.pp_application}

Stage: %{betadots_facts.stage} oder %{trusted.extension.pp_stage}

Zone: %{betadots_facts.zone} oder %{trusted.extension.pp_stage}

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

Now we can finish the layout of the hiera layers:

nodes/%{trusted.certname}.yaml
apps/%{betadots_facts.application}-%{betadots_facts.stage}.y
aml
app/%{betadots_facts.application}.yaml
zone/%{betadots_facts.zone}.yaml
global.yaml

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

These layers can now be added to our hiera.yaml file:

version: 5

defaults:
 datadir: data

hierarchy:
 - name: "yaml hierarchy"
 paths:
 - "nodes/%{trusted.certname}.yaml"
 - "apps/%{betadots_facts.application}-%{betadots_facts.stage}.yaml"
 - "app/%{betadots_facts.application}.yaml"
 - "zone/%{betadots_facts.zone}.yaml"
 - "global.yaml"

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

Please note that a new layer is added very quickly.
Reducing your number of hierarchies, is work intense, as one must check if data
needs to be overwritten or of data are shared data.

On the other hand we have seen hiera.yaml files with 18 and more hierarchies and
no-one was aware why they exist or where to place data inside and which nodes
are affected.

Please consider your hierarchies carefully, try to keep the number of layers low.

© betadots GmbH 2024

Hiera basics - What is a hierarchy?

From now on Puppet can query for data.

In general there are two options:

- Automatic data binding
- Explicit lookup

Many people do explicit lookups, but automatic data binding is faster and more
simple and less to type.

© betadots GmbH 2024

Hiera basics - Classes with parameters

Within Puppet one can specify parameters within the class header.

The parameters consist of the following entries:

class foo (
 [DataType] $parameter_name = 'default',
) {
 # Puppet DSL
}

© betadots GmbH 2024

Hiera basics - Classes with parameters

By adding the optional data type we can easily validate if an application admin has
provided correct data.
As Puppet code developer we want to be sure that if we expect a bool value, we
receive a bool value.

Puppet has several core data types, like Boolean, String, Integer, Float,
Array, Hash, Regexp and many more.

Several modules build their own data types (mostly based on regular
expressions), like Stdlib::Absolutepath

© betadots GmbH 2024

Hiera basics - Classes with parameters

The parameter name must start with a dollar sign followed by a lower case letter
afterwards one can use digits, lower case letters and underscores.

The default value is optional. If one does not specify a default value, the
responsible application admin must provide a value using hiera data. If the admin
does not set the required data, Puppet compiler will produce an error.

By this a Puppet developer can control that required information are not forgotten.

© betadots GmbH 2024

Hiera basics - Classes with parameters

An example:

class knowhow (
 String[1] $type,
 Boolean $enable_brain = true,
 String[1] $knowledge_base = 'dictionary',
) {
 # Puppet DSL
}
Whenever the class `knowhow` gets declared (e.g. using `include`), Puppet will
automatically query Hiera for data.

© betadots GmbH 2024

Hiera basics - Classes with parameters

In our example:

knowhow::type
knowhow::enable_brain
knowhow::knowledge_base

Within Hiera we can now overwrite the default values and set required values:

stage/dev.yaml

knowhow::type: 'human'
knowhow::enable_brain: false
knowhow::knowledge_base: 'wikipedia'

© betadots GmbH 2024

Hiera basics - Scope of data

So far we have not talked about the data location.

There are three locations available and Puppet queries them in the provided order:

1. Global scope
2. Environment scope
3. Module scope

© betadots GmbH 2024

Hiera basics - Scope of data

Global scope:

The global scope was the default for Hiera config version 3 and is kept in place for
migration.
In a modern Puppet environment one should only use the environment or the
module scope.
Global scope is configured in /etc/puppetlabs/puppet/hiera.yaml.
To disable global scope, one can ensure that the hiera.yaml file is empty. Puppet
Enterprise customers must ensure, that the file exists and has Puppet Enterprise
required content, but no hierarchies.

© betadots GmbH 2024

Hiera basics - Scope of data

Environment scope:

If you are working on the base line and the additional configuration you want to
place your data into our control repository.
This allows a seamless integration as you write your profiles and integrate library
modules.
Within environment scope, the hiera config file is located in your control-repo root
directory.

If you need different access rights between the control repository and the data
structure, one can place the data into a separate git project and integrate the data
in Puppetfile (similar to a module).
Please don't forget to also set the datadir configuration.

© betadots GmbH 2024

Hiera basics - Scope of data

Module scope:

If you are developing modules and you need to provide different OS package
names, you can place the data in the module.
You only need to add a hiera.yaml config version 5 to your module.

Please note that within a module only data for that specific module can be placed.

© betadots GmbH 2024© betadots GmbH 2024

Hiera lookup validation

© betadots GmbH 2024

Hiera lookup validation

Whenever you want to deploy a partial change using hiera data, it might happen,
that another node receives the change, too.

Or:

You plan a change and the node does not get the data you were considering.

But why?

Usually this happens when we have many data and lots of hierarchy layers and
somewhere data where placed into the wrong file.
Analyzing hiera lookup manually can be very time consuming.

© betadots GmbH 2024

Hiera lookup validation

One needs to

- review hiera.yaml file and check the facts which build the layers
- read the facts from a node and does in-memory replacement of facts
- parse each of the layers, check if a file is available

And please don't forget to first have a look if the key your are analyzing has a
lookup_option set.
https://www.puppet.com/docs/puppet/latest/hiera_merging#merge_behaviors

https://www.puppet.com/docs/puppet/latest/hiera_merging#merge_behaviors

© betadots GmbH 2024

Hiera lookup validation

On the other hand there are two utilities which help checking hiera data lookups:

- puppet lookup --explain
- Hiera Data Manager

© betadots GmbH 2024

Hiera lookup validation - Puppet lookup

Puppet lookup is the Puppet agent built in command line utility to query data from
hiera which must be run on the Puppet server.

The Puppet lookup command must be run as `root` user!

One can pass arguments like node (FQDN), environment to read data from,
provide a json file with facts, set the merge behavior.

The output from puppet lookup will just show the result, but not the way, how the
result was found.

One can also get this information by using the flag --explain.

© betadots GmbH 2024

Hiera lookup validation - Puppet lookup

Please note that you must also add the flag --compile if you use top scope
variables in your hiera.yaml file (e.g. from `manifests/site.pp`).
If your code does not compile you can not analyze Hiera data.

We therefore recommend to only use facts in hiera.yaml file.

Now puppet lookup will be very responsive and write down what it looked for, if
something was found and then returns the result.

The output is difficult to parse.

© betadots GmbH 2024

Hiera lookup validation - Hiera Data Manager (HDM)

Hiera Data Manager (HDM) is an Open Source web application which is publicly
available on GitHub.

https://github.com/betadots/hdm

The source code is licensed under the AGPL-3.0 license.

HDM allows you to view your node data or search for data in an environment.

https://github.com/betadots/hdm

© betadots GmbH 2024

Hiera lookup validation - Hiera Data Manager (HDM)

To make use of HDM some requirements must be met:

- hiera config v5 (environment scope only)
- properly configured and integrated puppetdb (facts upload)
- read access to puppetdb (http or https)
- read access to fully deployed code (r10k deploy)
- read access to eyaml private key (only if decryption is activated)
- NO top scope variables in hiera.yaml config file (only facts or trusted is
possible)

© betadots GmbH 2024

Hiera lookup validation - Hiera Data Manager (HDM)

Besides this HDM has some limitations:

- no top scope data (if they are there, they are not shown)
- no module data
- no execution of functions in hiera data
- needs up-to-date Ruby version (use HDM in container!)

© betadots GmbH 2024

Hiera lookup validation - Hiera Data Manager (HDM)

At the time of writing the following
features are available:

- Usermanagement
 - LDAP
 - SAML
 - Local
 - without
- Security
 - RBAC
 - Node
 - Environment
 - Key
 - Encryption

- Security (continued)
 - EYAML usage
 - Read/Write mode
 - write goes to a git repository
- API
 - Foreman HDM Smart-Proxy
 - Foreman HDM View
- Data analysis
 - Search for a node value
 - Search for a key in an environment

© betadots GmbH 2024

Hiera lookup validation - Hiera Data Manager (HDM)

There are two ways how to run HDM:

- RVM-based
- Container based

The RVM based solution is used by developers who want to collaborate.
The Container based solution is already successfully in use in several production
environments.

The complete setup of HDM can be automated using the voxpupuli-hdm module

https://forge.puppet.com/modules/puppet/hdm

https://forge.puppet.com/modules/puppet/hdm

© betadots GmbH 2024

Hiera lookup validation - Hiera Data Manager (HDM)

© betadots GmbH 2024

Hiera lookup validation - Hiera Data Manager (HDM)

© betadots GmbH 2024

Hiera lookup validation - Hiera Data Manager (HDM)

© betadots GmbH 2024

Hiera lookup validation - Hiera Data Manager (HDM)

© betadots GmbH 2024

Hiera lookup validation - Hiera Data Manager (HDM)

© betadots GmbH 2024

Hiera lookup validation - Hiera Data Manager (HDM)

HDM planned features

Besides this we are talking about additional features:

- data from modules
- data result
- compare data between environments

Feel free to communicate your needs in our discussions

https://github.com/betadots/hdm/discussions

https://github.com/betadots/hdm/discussions

© betadots GmbH 2024© betadots GmbH 2024

Summary

© betadots GmbH 2024

Summary

Hiera is super powerful.

It allows one to write clean Puppet code without large data processing parts.

People responsible for data don't need to understand Puppet on expert level. Basic
knowledge is helpful and can be learned over time.

Hiera has an internal option to configure if the most specific result should be returned or
if data must be merged. This gives additional flexibility for differences in platforms.

All YAML 1.1 internal specifications like anchors or aliases can be used.

Analysis and comparison can be done using Hiera Data Manager
Hiera and Hiera Data Manager will provide insight and details into flexible IT automation.

© betadots GmbH 2024© betadots GmbH 2024

Why does THIS node
have THAT config?

HDM provides insight.
Thank you

