
  

To Foreman 2.0 and Beyond

An Architecture Perspective

Ewoud Kohl van Wijngaarden
Red Hat



  

Contents
● About myself
● Foreman 2.0
● Foreman Architecture
● Building Katello
● Katello 4.0



  

$ id
● Ewoud Kohl van Wijngaarden
● Open source enthusiast
● Senior Software Engineer at Red Hat

– Platform Team

– Installer maintainer

● Mostly upstream



  

Foreman 2.0
● Dynflow based on Sidekiq and Redis
● Ruby 2.5+ for all projects (except the installer)
● DB migration and seeding changes
● Only PostgreSQL
● Update to PostgreSQL 12 on EL7
● IPv6*



  

What didn’t make it?
● EL8 server support
● Replacing Passenger with Puma



  

Foreman Architecture
● Foreman
● Foreman Proxy



  

Foreman
● Ruby on Rails application

– Many plugins available

● Dynflow: async tasks via Sidekiq
● PostgreSQL database
● Python websockify process for VNC



  

Authentication
● Basic HTTP
● OAuth
● TLS client certificates
● Personal Access Tokens
● External via Apache (Kerberos, OIDC, ...)



  

Minimal deployment
● Apache with mod_passenger
● PostgreSQL



  

Adding Dynflow
● Dynflow daemons

– dynflow-sidekiq@orchestrator
– dynflow-sidekiq@worker

● Redis



  

Endpoints
● HTTPS port 443
● HTTP port 80
● HTTPS ports 5910-5930 (VNC proxy)



  



  

Foreman Proxy
● Sinatra (Ruby) application
● Very modular design
● Various modules are plugable with providers
● Functionality discovery using features API



  

Built-in modules
● BMC
● DHCP (ISC, libvirt and native MS providers)
● DNS (dnscmd, libvirt and nsupdate providers)
● Facts (used only for discovery)
● HTTPBoot
● Logs
● Puppet
● Puppet CA
● Realm (FreeIPA provider)
● Templates
● TFTP



  

Endpoints
● HTTPS port 8443
● HTTP port 8000 (optional)
● Each module on HTTPS/HTTP/both



  



  

Adding Dynflow
● Used by plugins such as Remote Execution
● RPM-based: Standalone process on HTTPS 8008
● Deb-based: In process
● In memory SQLite database
● RFC open to redesign this



  



  

Composing Foreman              



  



  

Simplified



  



  

Building Katello



  

Current release: 3.14
● Foreman plugin
● Foreman Proxy
● Candlepin
● Pulp 2
● Qpid



  



  

Foreman Proxy Content
● AKA Capsule
● Foreman Proxy on port 9090
● Reverse Proxy to Foreman
● Pulp



  

Candlepin
● Java application on Tomcat
● PostgreSQL database
● Listens on HTTPS port 8443
● Sends events to a message bus (Qpid)
● Events consumed by Katello



  



  

Pulp 2
● Python
● Various services

– pulp_celerybeat
– pulp_resource_manager
– pulp_streamer
– pulp_workers + pulp_worker-0..n

● Served via Apache with mod_wsgi
– Repo Auth
– Streamer Auth

● MongoDB
● Squid
● Crane container registry

– Flask (Python) application
– HTTPS port 5000
– Apache mod_wsgi

● agents via Qpid



  

404 Architecture Not Found



  



  

Moving forward: 3.15
● Add Pulp 3

– File
– Container

● Migration for upgrading users



  

Pulp 3
● Django (Python)
● Various Python services

– pulpcore-api (gunicorn)
– pulpcore-content (gunicorn)
– pulpcore-resource-manager (rq worker)
– pulpcore-worker@i (rq worker)

● Apache as a reverse proxy
● PostgreSQL replaces MongoDB
● Redis replaces Qpid
● No more agent



  



  

Future version: 4.0
● Drop Pulp 2
● Read Candlepin events via STOMP

– RFC open

● Drop Qpid



  



  



  



  

Certificates
● Vanilla Foreman defaults to Puppet certs
● Katello uses custom certs
● Replacing is hard



  

There will not be a Foreman 2.24
- Tomer Brisker



  

Thinking about Foreman 3.0
● Move core functionality to plugins?
● New UI?
● Fill in the survey!



  

Thank you
● Questions?
● Comments?



  

Get ready to test Foreman 2.0.0 RC1


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

