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$ id
● Ewoud Kohl van Wijngaarden
● Open source enthusiast
● Senior Software Engineer at Red Hat

– Platform Team

– Installer maintainer

● Mostly upstream



  

Foreman 2.0
● Dynflow based on Sidekiq and Redis
● Ruby 2.5+ for all projects (except the installer)
● DB migration and seeding changes
● Only PostgreSQL
● Update to PostgreSQL 12 on EL7
● IPv6*



  

What didn’t make it?
● EL8 server support
● Replacing Passenger with Puma



  

Foreman Architecture
● Foreman
● Foreman Proxy



  

Foreman
● Ruby on Rails application

– Many plugins available

● Dynflow: async tasks via Sidekiq
● PostgreSQL database
● Python websockify process for VNC



  

Authentication
● Basic HTTP
● OAuth
● TLS client certificates
● Personal Access Tokens
● External via Apache (Kerberos, OIDC, ...)



  

Minimal deployment
● Apache with mod_passenger
● PostgreSQL



  

Adding Dynflow
● Dynflow daemons

– dynflow-sidekiq@orchestrator
– dynflow-sidekiq@worker

● Redis



  

Endpoints
● HTTPS port 443
● HTTP port 80
● HTTPS ports 5910-5930 (VNC proxy)



  



  

Foreman Proxy
● Sinatra (Ruby) application
● Very modular design
● Various modules are plugable with providers
● Functionality discovery using features API



  

Built-in modules
● BMC
● DHCP (ISC, libvirt and native MS providers)
● DNS (dnscmd, libvirt and nsupdate providers)
● Facts (used only for discovery)
● HTTPBoot
● Logs
● Puppet
● Puppet CA
● Realm (FreeIPA provider)
● Templates
● TFTP



  

Endpoints
● HTTPS port 8443
● HTTP port 8000 (optional)
● Each module on HTTPS/HTTP/both



  



  

Adding Dynflow
● Used by plugins such as Remote Execution
● RPM-based: Standalone process on HTTPS 8008
● Deb-based: In process
● In memory SQLite database
● RFC open to redesign this



  



  

Composing Foreman              



  



  

Simplified



  



  

Building Katello



  

Current release: 3.14
● Foreman plugin
● Foreman Proxy
● Candlepin
● Pulp 2
● Qpid



  



  

Foreman Proxy Content
● AKA Capsule
● Foreman Proxy on port 9090
● Reverse Proxy to Foreman
● Pulp



  

Candlepin
● Java application on Tomcat
● PostgreSQL database
● Listens on HTTPS port 8443
● Sends events to a message bus (Qpid)
● Events consumed by Katello



  



  

Pulp 2
● Python
● Various services

– pulp_celerybeat
– pulp_resource_manager
– pulp_streamer
– pulp_workers + pulp_worker-0..n

● Served via Apache with mod_wsgi
– Repo Auth
– Streamer Auth

● MongoDB
● Squid
● Crane container registry

– Flask (Python) application
– HTTPS port 5000
– Apache mod_wsgi

● agents via Qpid



  

404 Architecture Not Found



  



  

Moving forward: 3.15
● Add Pulp 3

– File
– Container

● Migration for upgrading users



  

Pulp 3
● Django (Python)
● Various Python services

– pulpcore-api (gunicorn)
– pulpcore-content (gunicorn)
– pulpcore-resource-manager (rq worker)
– pulpcore-worker@i (rq worker)

● Apache as a reverse proxy
● PostgreSQL replaces MongoDB
● Redis replaces Qpid
● No more agent



  



  

Future version: 4.0
● Drop Pulp 2
● Read Candlepin events via STOMP

– RFC open

● Drop Qpid



  



  



  



  

Certificates
● Vanilla Foreman defaults to Puppet certs
● Katello uses custom certs
● Replacing is hard



  

There will not be a Foreman 2.24
- Tomer Brisker



  

Thinking about Foreman 3.0
● Move core functionality to plugins?
● New UI?
● Fill in the survey!



  

Thank you
● Questions?
● Comments?



  

Get ready to test Foreman 2.0.0 RC1
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