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Really
● YamlCamp?  JinjaCamp?  YAML users 

support group)

● Everyone has an opinion already, me too

● in 5 minutes I will try to explain one of the 
motivations to migrate from jinja|yaml



Backstory
me: Whither salt 
DSL?

Salt OG devs: Salt doesn't have a DSL

Users can BYO DSL, 
https://docs.saltproject.io/en/latest/r
ef/renderers/all/

Salt users: jinja|yaml is the DSL

me: uh, can we fix DSL?  Add a version field 
and create v2.0 fixing any problems we've 
found?

Salt OG devs: 
https://docs.saltproject.io/en/latest/ref/renderers
/all/

When I joined 
SaltStack in 2014

https://docs.saltproject.io/en/latest/ref/renderers/all/
https://docs.saltproject.io/en/latest/ref/renderers/all/
https://docs.saltproject.io/en/latest/ref/renderers/all/
https://docs.saltproject.io/en/latest/ref/renderers/all/


Config shift
● The evolution of production tends towards 

complexity with many sources of 
authoritative information SoA Vault, 
NetBox, etc.) or other essential systems
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jinja|yaml

Config shift
● The evolution of production tends towards 

complexity with many sources of 
authoritative information SoA Vault, 
NetBox, etc.) or other essential systems

● That complexity will naturally manifest in 
jinja|yaml JIT-style config management
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jinja|yaml

Config shift
Production configs can become impossible to replicate leftwards in integration CI 
or development

● Users have to add conditional environment logic to stub dev/CI values

SoA

SoA

SoA

SoA

config renderfake production



jinja|yaml

Config shift
Production configs can become impossible to replicate leftwards in integration CI 
or development

● Or mock each production SoA (good luck with that)

SoA

SoA

SoA

SoA

config render
mock 
SoA

mock 
SoA

mock 
SoA

mock 
SoA

fake production



Config shift
Claim: Config management is not change management; it is actually state 
enforcement

● It is the rightmost shifted part of the delivery CD) pipeline
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Config shift
Claim: Config management is not change management; it is actually state 
enforcement

● Users having to dry run in (a prescribed subset of) production to get config 
feedback is problematic
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Config shift
If you don't know the configs you are supposed to be managing until they 
materialize in production

● Your changes are not actually mediated by your CD

● Users can't test or iterate outside of a production context

● Thus changes are either slow or dangerous



Have your waffle and eat it too
● Salt's bias for flexibility and difficult learning curve means users inevitably 

write unsure copypasta or inscrutable abstractions

● Can config shift left into dev/CI while CI workloads remain constant and 
production workloads continue to scale?



Have your waffle and eat it too
Design goals:

1 Give users authentic dev/CI config

2 Maintain O(config) CD complexity



Have your waffle and eat it too
2  | Maintain O(config) CD complexity

What does that even mean?

● config is a measure of the size of pillar or the preprocessing needed for 
highstate

● Shifting config rendering left in CD takes the workload off from salt minions 
(very many) and salt masters (many) to CI (few)

● Isn't that as antiscalable as you can get?



Have your waffle and eat it too
2  | Maintain O(config) 
CD complexity

● We're reimplementing the 
central compute model that 
salt was created as response 
to?

● We only need to shift 
common configs to CI

● Minions still 
autonomously compile 
and apply their own 
idempotent highstate



Have your waffle and eat it too
2  | Maintain O(config) CD complexity

We found almost no variation in realized configs

● Users actually don't need the full systems ⊗ configs permutation space

● So, we already had O(config) complexity and didn't know it because our 
tooling obscures this fact

● Bonus: config change usecases are more legible in the change management 
model than config management model anyway



Have your waffle and eat it too
2  | Maintain O(config) CD complexity

We still need to connect to production SoAs Vault, NetBox, etc.)

● Change management should also be in charge of these config pipelines too

● So integrate the services with temporal/airflow/etc. instead of salt to deliver 
configs per environment



Have your waffle and eat it too
1  | Give users authentic dev/CI config

● If we don't need jinja|yaml (salt) to render config, where do we put it?

● How about a modern config language CUE/Pkl) that has, you know

● Full typing

● Rigorous grammar

● Learned from the good and bad of primitive yolo hacks like jinja|yaml



Have your waffle and eat it too
1  | Give users authentic dev/CI config

Derivative benefits from using a modern config language CUE/Pkl)

● Safe for human consumption

● Amenable to automated

● Auditability

● Compliance



Open problems
● Integrating production SoAs Vault, NetBox, etc.) into change management 

(temporal/airflow) is not well defined

● Integrating (the idea of) production SoAs into the dev environment

● How to define OpenSLO health mediated deployment for config changes

● Rendered config format and delivery pipeline

● Large legacy codebase written in jinja|yaml

● CUE/Pkl salt renderer
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