
Against yaml+jinja

Justin Findlay
Systems Engineer

Really
● YamlCamp? JinjaCamp? YAML users

support group)

● Everyone has an opinion already, me too

● in 5 minutes I will try to explain one of the
motivations to migrate from jinja|yaml

Backstory
me: Whither salt
DSL?

Salt OG devs: Salt doesn't have a DSL

Users can BYO DSL,
https://docs.saltproject.io/en/latest/r
ef/renderers/all/

Salt users: jinja|yaml is the DSL

me: uh, can we fix DSL? Add a version field
and create v2.0 fixing any problems we've
found?

Salt OG devs:
https://docs.saltproject.io/en/latest/ref/renderers
/all/

When I joined
SaltStack in 2014

https://docs.saltproject.io/en/latest/ref/renderers/all/
https://docs.saltproject.io/en/latest/ref/renderers/all/
https://docs.saltproject.io/en/latest/ref/renderers/all/
https://docs.saltproject.io/en/latest/ref/renderers/all/

Config shift
● The evolution of production tends towards

complexity with many sources of
authoritative information SoA Vault,
NetBox, etc.) or other essential systems

SoA

SoA

SoA

SoA

production

jinja|yaml

Config shift
● The evolution of production tends towards

complexity with many sources of
authoritative information SoA Vault,
NetBox, etc.) or other essential systems

● That complexity will naturally manifest in
jinja|yaml JIT-style config management

SoA

SoA

SoA

SoA

production

SoA

SoA

SoA

SoA

config render

jinja|yaml

Config shift
Production configs can become impossible to replicate leftwards in integration CI
or development

● Users have to add conditional environment logic to stub dev/CI values

SoA

SoA

SoA

SoA

config renderfake production

jinja|yaml

Config shift
Production configs can become impossible to replicate leftwards in integration CI
or development

● Or mock each production SoA (good luck with that)

SoA

SoA

SoA

SoA

config render
mock
SoA

mock
SoA

mock
SoA

mock
SoA

fake production

Config shift
Claim: Config management is not change management; it is actually state
enforcement

● It is the rightmost shifted part of the delivery CD) pipeline

you

production

development
integration

automated
delivery path

config management

change management

Config shift
Claim: Config management is not change management; it is actually state
enforcement

● Users having to dry run in (a prescribed subset of) production to get config
feedback is problematic

you

production

development
integration

testing
workaround

path

automated
delivery path

compliance
issues

snowflakes
dragons

Config shift
If you don't know the configs you are supposed to be managing until they
materialize in production

● Your changes are not actually mediated by your CD

● Users can't test or iterate outside of a production context

● Thus changes are either slow or dangerous

Have your waffle and eat it too
● Salt's bias for flexibility and difficult learning curve means users inevitably

write unsure copypasta or inscrutable abstractions

● Can config shift left into dev/CI while CI workloads remain constant and
production workloads continue to scale?

Have your waffle and eat it too
Design goals:

1 Give users authentic dev/CI config

2 Maintain O(config) CD complexity

Have your waffle and eat it too
2 | Maintain O(config) CD complexity

What does that even mean?

● config is a measure of the size of pillar or the preprocessing needed for
highstate

● Shifting config rendering left in CD takes the workload off from salt minions
(very many) and salt masters (many) to CI (few)

● Isn't that as antiscalable as you can get?

Have your waffle and eat it too
2 | Maintain O(config)
CD complexity

● We're reimplementing the
central compute model that
salt was created as response
to?

● We only need to shift
common configs to CI

● Minions still
autonomously compile
and apply their own
idempotent highstate

Have your waffle and eat it too
2 | Maintain O(config) CD complexity

We found almost no variation in realized configs

● Users actually don't need the full systems ⊗ configs permutation space

● So, we already had O(config) complexity and didn't know it because our
tooling obscures this fact

● Bonus: config change usecases are more legible in the change management
model than config management model anyway

Have your waffle and eat it too
2 | Maintain O(config) CD complexity

We still need to connect to production SoAs Vault, NetBox, etc.)

● Change management should also be in charge of these config pipelines too

● So integrate the services with temporal/airflow/etc. instead of salt to deliver
configs per environment

Have your waffle and eat it too
1 | Give users authentic dev/CI config

● If we don't need jinja|yaml (salt) to render config, where do we put it?

● How about a modern config language CUE/Pkl) that has, you know

● Full typing

● Rigorous grammar

● Learned from the good and bad of primitive yolo hacks like jinja|yaml

Have your waffle and eat it too
1 | Give users authentic dev/CI config

Derivative benefits from using a modern config language CUE/Pkl)

● Safe for human consumption

● Amenable to automated

● Auditability

● Compliance

Open problems
● Integrating production SoAs Vault, NetBox, etc.) into change management

(temporal/airflow) is not well defined

● Integrating (the idea of) production SoAs into the dev environment

● How to define OpenSLO health mediated deployment for config changes

● Rendered config format and delivery pipeline

● Large legacy codebase written in jinja|yaml

● CUE/Pkl salt renderer

Thank you

Justin Findlay
Systems Engineer

Cloudflare Platform Configuration team

● Cian Leow
● Walter Clark
● Menno Bezema
● Marek Schwann

● Joe Groocock
● Vasilii Alferov

