
Hi, I’m Alina Buzachis, I hold a PhD in Distributed Systems and I am a Senior Software Engineer in the Ansible Cloud Content
Team, Today, I’ll guide you through key aspects of working with the Ansible Collection for Amazon Web Services and show
how it can enhance your AWS automation experience. Feel free to reach out if you’d like to discuss anything in more detail.
You can connect with me on GitHub and Matrix.

Let’s dive in and discover how you can unlock the full potential of AWS automation with Ansible!

Automating AWS Cloud Services with Ansible
Alina Buzachis, PhD
Senior Software Engineer
GitHub: alinabuzachis
Matrix: @aevelinab:ansible.im

In this talk:

● I’ll explain the difference between the upstream and downstream.
● We’ll explore the amazon.aws releases timeline with recent updates, and new features.
● I’ll show how your AWS workflows can benefit the AWS new features, with practical use cases.
● Then we will shift focus on updates and changes developers or contributors need to know.
● Looking ahead at what’s in store for AWS automation with Ansible.
● Opportunities to contribute and engage with the Ansible and AWS communities.

1. Upstream vs Downstream

2. amazon.aws: Release Timeline

3. amazon.aws: What’s new at a glance

4. New features and use cases

5. Changes for developers

6. What’s next

7. How to get involved

2

Agenda

Automating AWS Cloud Services with Ansible

When working with Ansible collections for AWS, it’s important to understand the distinction between upstream and
downstream.
Upstream (community.aws): Community-driven collection focused on delivering the latest AWS features. Ideal for
users wanting cutting-edge functionality.
Downstream (amazon.aws): A stable, Red Hat certified collection with a deliberate release cycle. Supported by
Red Hat through the Ansible Automation Platform (AAP), it’s perfect for people and enterprises needing reliable,
production-ready solution. Modules in community.aws can be promoted to amazon.aws once they are stable,
well-tested, and aligned with customer use cases. This process guarantees that only reliable and robust modules
are included in the amazon.aws collection. Being Red Hat Ansible Certified Content, this collection is eligible for
support through the Ansible Automation Platform. Both collections are part of the Ansible community package.

3

OPEN
SOURCEcommunity.aws amazon.aws

Upstream Downstream

Fast, frequent, community driven and supported Slower, stable, certified, supported by Red Hat through AAP

Automating AWS Cloud Services with Ansible

vs

https://www.redhat.com/en/technologies/management/ansible

The amazon.aws collection continues to evolve, delivering new features, updates, and improvements to support
AWS automation. Let’s take a closer look at the recent release timeline:

● The latest major release, version 9.0.0,on October 29, 2024, marked a major milestone, introducing
significant updates and new features.

● Shortly after, version 9.1.0 was released on December 5, 2024, bringing additional improvements and
expanding functionality.

● Most recently, version 9.1.1, a maintenance release, went live on January 12, 2025, addressing bug
fixes and ensuring greater stability.

Regarding the release cadence, we’ve adopted a monthly release cycle, with releases scheduled for the first
Tuesday of every month. This structured approach ensures a steady cadence of enhancements, bug fixes, and
new features while maintaining high standards of quality.
amazon.aws 9,0 and also community.aws 9.0 are available in the latest release of the Ansible Community
Package. (11.0).

9.0.0
9.1.0

9.1.1

Latest Major Release

Oct 29, 2024 Dec 5, 2024 Jan 12, 2025

4

amazon.aws: Release Timeline

NEW

Automating AWS Cloud Services with Ansible

Let’s take a quick look at what’s new in the latest releases of the amazon.aws collection:

1. Migrated Modules
○ A total of 17 modules have been promoted from the community.aws collection to the

amazon.aws collection, including critical ones like autoscaling_instance_refresh,
ec2_launch_template, and the ec2_transit*and ec2_vpc* groups, which now
include corresponding info modules for enhanced functionality.

1. New Modules
○ The collection introduces 4 brand-new modules:

■ amazon.aws.autoscaling_instances and

amazon.aws.autoscaling_instances_info for working with auto-scaling

configurations.

■ amazon.aws.ec2_launch_template_info for managing launch template
details.

■ amazon.aws.ec2_vpc_egress_igw_info for handling VPC egress internet
gateways.

1. Minimum Requirements
○ To ensure compatibility with the latest updates, the minimum versions for dependencies are:

■ botocore: 1.31.0
■ boto3: 1.28.0
■ Python: 3.8
■ ansible-core: 2.15

The amazon.aws Collection has dropped support for `botocore<1.31.0` and `boto3<1.28.0`. Most modules will
continue to work with older versions of the AWS software development kit (SDK), however, compatibility with
older versions of the AWS SDK is not guaranteed and will not be tested. When using older versions of the AWS
SDK, Red Hat Ansible Automation Platform will display a warning. Check out the module documentation for the
minimum required version for each module.

The amazon.aws Collection requires python 3.8 at least.

Tested with the Ansible Core >= 2.15.0 versions, and the current development version of Ansible. Ansible Core
versions prior to 2.15.0 are not supported.

1. Bug Fixes

5

17 modules promoted
from the community.aws collection
to the amazon.aws collection.

Including:
▸ autoscaling_instance_refresh
▸ ec2_launch_template
▸ ec2_placement_group
▸ ec2_transit*

amazon.aws: What’s new at a glance

▸ ec2_vpc*
▸ elb_classic_lb_info

4 NEW modules
▸ amazon.aws.autoscaling_instances
▸ amazon.aws.autoscaling_instances_info
▸ amazon.aws.ec2_launch_template_info
▸ amazon.aws.ec2_vpc_egress_igw_info

Minimum Versions
botocore 1.31.0
boto3 1.28.0
Python 3.8
ansible-core 2.15

Bug Fixes
10 bug fixes:
▸ aws_ec2
▸ ec2_vol
▸ s3_bucket
▸ s3_object
▸ …

ec2_transit* includes ec2_transit_gateway and ec2_transit_vpc_attachment_vpc_attachment with the corresponding info modules
ec2_vpc* includes ec2_vpc_egress_igw, ec2_vpc_nacl, ec2_vpc_peering, ec2_vpc_vpn with the corresponding info modules

Automating AWS Cloud Services with Ansible

https://docs.ansible.com/ansible/devel/collections/amazon/aws/index.html

○ These releases also addresses 10 bugs, improving stability for modules like aws_ec2, ec2_vol,
s3_bucket, s3_object, and more.

Now, let’s dive into some of the exciting new features that have been added to the amazon.aws collection and discover some
practical use cases.

New Features

One of the new features introduced in the amazon.aws.ec2_vpc_route_table module is the ability to define
transit_gateway_id directly in the routes option. This feature is particularly useful for setting up centralized
routing through an AWS Transit Gateway, making it easier to manage and scale your VPC network architecture. It
ensures efficient routing across multiple VPCs, improving both scalability and maintainability.

7

• Module: amazon.aws.ec2_vpc_route_table

• New Feature: transit_gateway_id in routes.

• Benefits:

◦ Simplifies inter-VPC communication.

◦ Centralized connectivity management.

• Use Case: Centralized Network Routing with
AWS Transit Gateway

- name: Add a route to public route table
 amazon.aws.ec2_vpc_route_table:
 vpc_id: "{{ vpc.vpc.id }}"
 tags:
 Public: "true"
 Name: Public route table
 routes:
 - dest: "0.0.0.0/0"
 gateway_id: igw
 - dest: ::/0
 gateway_id: igw
 - dest: "10.0.0.0/16"
 transit_gateway_id: "{{
transit_gateway.transit_gateway.transit_gateway_
id }}"
 register: add_routes

Automating AWS Cloud Services with Ansible

New Features

The amazon.aws.ec2_instance module now simplifies the management of EC2 instances, enabling on-the-fly
scaling without manual intervention (no need to manually stop, modify the instance type, and restart). This new
capability is ideal for situations where you need to scale EC2 instances up or down for peak usage times or to
adjust for cost optimization. For example, during periods of high demand, you can automatically scale up the
instance type to ensure your application has the necessary resources, and scale down when demand decreases,
reducing costs.

8

• Module: amazon.aws.ec2_instance

• New Capability: Automate resizing operations.

◦ Stop, modify type, and restart in one step.

• Benefits:

◦ Minimized downtime.

◦ Streamlined scaling for performance and cost
optimization.

• Use Case: Managing EC2 Instance Types for Cost
Optimization and Performance Scaling

- name: Upgrade EC2 instance type for peak usage
 amazon.aws.ec2_instance:
 name: "{{ ec2_instance_name }}"
 image_id: "{{ ec2_ami_id }}"
 instance_type: "t3.large" # Upgrade instance type to a
larger size
 state: "present"
 subnet_id: "{{ subnet.id }}"
 wait: true

Automating AWS Cloud Services with Ansible

New Features

The amazon.aws.rds_instance module now supports the multi_tenant: true option, enabling you to
provision multitenant container databases (CDBs). This feature is particularly beneficial for Software-as-a-Service
(SaaS) application that serves multiple clients, each with different data storage needs. The architecture uses a
multitenant database design in Amazon RDS where multiple tenants share the same CDB, but their data is stored
in separate pluggable databases (PDBs) for isolation and security.

9

• Module: amazon.aws.rds_instance

• New Feature: multi_tenant: true

• Benefits:

◦ Efficient resource utilization.

◦ Simplified management.

◦ Secure tenant isolation.

• Use Case: Multi-Tenant SaaS Application
with Multi-Tenant CDB Support

- name: Provision Multi-Tenant RDS instance with CDB
support
 amazon.aws.rds_instance:
 db_instance_identifier: "{{ db_instance_name }}"
 db_instance_class: "db.m6g.large"
 allocated_storage: 100
 engine: "oracle-se2-cdb"
 multi_tenant: true
 storage_type: "gp2"
 vpc_security_group_ids:
 - "{{ sg_group_id }}"
 state: "present"

New Features

Automating AWS Cloud Services with Ansible

The amazon.aws.cloudwatchlogs_log_group_metric_filter module now introduces two new features:
the ability to specify units and dimensions for metrics. These enhancements allow for more precise monitoring and
categorization of your logs, making it easier to track and analyze API performance at a granular level. You want to
track API request latency precisely in milliseconds and categorize the metrics by TenantID and Environment
(production or staging) for deeper insights and quicker troubleshooting.

1
0

• Module:
amazon.aws.cloudwatchlogs_log_group_me
tric_filter

• New Features:

◦ unit: Specify measurement units (e.g.,
Milliseconds).

◦ dimensions: Add labels for metrics
categorization.

• Use Case: Monitoring Multi-Tenant API Latency
with Precise Units and Dimensions

- name: Create metric filter for API latency by tenant with
specific units and dimensions
 amazon.aws.cloudwatchlogs_log_group_metric_filter:
 log_group_name: "{{ log_group_name }}"
 filter_name: "{{ filter_name }}"
 filter_pattern: '{ $.event_type = "API Request" &&
$.latency = * }'
 metric_transformations:
 - metric_name: "TenantAPILatency"
 metric_namespace: "SaaSApp/Performance"
 metric_value: "$.latency"
 unit: "Milliseconds"
 dimensions:
 TenantID: "$.tenant_id"
 Environment: "$.env"
 state: present

Automating AWS Cloud Services with Ansible

New Features

Let’s now shift focus to some important updates for developers. If you are an active contributor to the amazon.aws
collection or are interested in becoming one, there are a couple of key changes you should be aware of.

Changes for Developers

If you’re an active contributor or planning to contribute to the Ansible Collection for AWS, there are two key
updates to be aware of.
First, there has been breaking change for module_utils.botocore that makes the conn_type parameter to be
mandatory, ensuring more reliable connection configuration.
Second, improvements have been made to error handling by catching the BotoCoreError exception more
comprehensively. Additionally, the transition from botocore.Session to boto3.Session standardizes session
management for better consistency and stability across the codebase. These changes impact the community.aws
collection also because amazon.aws and community.aws share some base module utils.

12

Changes for developers

Breaking Change:

○ conn_type parameter is mandatory in
module_utils.botocore.

Automating AWS Cloud Services with Ansible

Enhanced Error Handling:

○ BotoCoreError exceptions handled
comprehensively.

○ Transition from botocore.Session to
boto3.Session.

In addition, the effort to enhance the amazon.aws collection, focusing on refactoring key modules like S3, EC2,
and RDS for improved readability, maintainability, and performance. It includes variable renaming for consistency
and the addition of type hinting to strengthen code clarity.
Although this update covers major modules, refactoring for others will continue in future releases. Documentation
has also been improved, with updated RETURN blocks for accuracy and the adoption of the Ansible semantic
markdown format, enhancing readability and usability.

13

Changes for developers

Code Quality Improvements:

○ Refactored S3, EC2, and RDS modules.
○ Renamed variables for consistency.
○ Type hinting added to all functions.

Automating AWS Cloud Services with Ansible

Documentation Updates:

○ Updated RETURN blocks for plugins.
○ Adopted Ansible semantic markdown

format.

amazon.aws 10.0.0:

● aws_ssm Plugin Promotion
The aws_ssm plugin is being considered for promotion in version 10.0.0. This will enhance AWS
Systems Manager integration, improving automation for managing EC2 instances and other AWS
resources.

New Module Promotions (Pending Capacity):

● Several new modules are under consideration for promotion, contingent on available capacity. Stay
updated and contribute via the GitHub Issue.

2025 Focus: AWS AI/ML Support

● In 2025, we’ll be exploring enhanced support for AWS AI/ML services. This investigation will pave the
way for automation tools that integrate with AWS's growing AI/ML offerings, meeting the needs of
next-generation workloads.

14

What’s next

Automating AWS Cloud Services with Ansible

➔ amazon.aws 10.0.0
◆ New aws_ssm connection plugin promoted

➔ New plugins to be promoted (Pending Capacity).
◆ sts_session_token, secretsmanager_secret, ssm_parameter

◆ Stay updated and contribute via the GitHub Issue.

➔ Continue with the initiative to improve the code quality of the collection as a whole.

➔ 2025 Focus.
◆ Extend AWS AI/ML Support.

https://github.com/ansible-collections/amazon.aws/issues/2394
https://github.com/ansible-collections/amazon.aws/issues/2394

Contributions to the Ansible collections for AWS are always welcome and highly appreciated! If you're interested
in contributing, we encourage you to follow the Guidelines for Ansible Amazon AWS Module Development to get
started. These guidelines will help you understand best practices and how to contribute effectively.

To ease your journey into contribution, take a look at both the community.aws and amazon.aws collections for easy
fixes and good first issues—these are great opportunities for newcomers to make their first contribution.
Additionally, you can join the AWS Working Group and participate in the upcoming AWS Community Meeting on
February 27 at 1:30 pm US Eastern time. This is a great chance to connect with other community members, ask
questions, and share your ideas. You can also join the join the Ansible Community Forum where you can
participate in discussions, ask questions, and get help from the wider Ansible community.

For more resources, check out my latest blog post: "What’s New in Cloud Automation: Red Hat Ansible Certified
Content Collection for amazon.aws 9.0.0." It offers insights into the new features and improvements, helping you
stay up-to-date with the latest in cloud automation.

15

Automating AWS Cloud Services with Ansible

How to get involved

➔ Contributions are welcome and appreciated! Please see the Guidelines for Ansible Amazon
AWS module development for more information.

➔ Look through community.aws and amazon.aws collections, to find easy fix and good first issues.
➔ Join the AWS Working Group and the next AWS Community Meeting on February 27 at 1:30pm

US Eastern time.
➔ Check out the Ansible Community Forum where you can participate in discussions, ask

questions, and get help from the wider Ansible community.

 More resources:
- My latest blogpost: What’s new in cloud automation: Red Hat Ansible Certified Content

Collection for amazon.aws 9.0.0

https://forum.ansible.com/
https://docs.ansible.com/ansible/latest/collections/amazon/aws/docsite/dev_guidelines.html
https://docs.ansible.com/ansible/latest/collections/amazon/aws/docsite/dev_guidelines.html
https://forum.ansible.com/g/AWS
https://forum.ansible.com/
https://www.redhat.com/en/blog/whats-new-cloud-automation-red-hat-ansible-certified-content-collection-amazonaws-900
https://www.redhat.com/en/blog/whats-new-cloud-automation-red-hat-ansible-certified-content-collection-amazonaws-900

Thank you all for joining today’s session! I hope you gained valuable insights into the Ansible collections for AWS
and the exciting developments around automating AWS cloud services with Ansible.

Thank you again, and I look forward to connecting with you all!

Thanks!
GitHub: alinabuzachis

Matrix:
#community:ansible.com
#social:ansible.com
#aws:ansible.com

Ansible AWS community forum:
https://forum.ansible.com/g/AWS

