%

Network Backups & Restore with Ansible

Rohit Thakur

Principal Engineer, Ansible Networking
GitHub: rohitthakur2590

Matrix: @rothakur:ansible.im

ANSIBLE

€2 Introduction

€2 Why Network Backups Are Hard?
Q Solution Overview

. Architecture Overview

€) Idempotent Backups
> Vendor Neutral Designs
/., Diff Severity Scoring

‘ Backup Verification

@ SCM Integration

O Q&A

& Key Takeaways

Introduction @

Here's what we'll cover today:

A

Problem Statement

Discuss challenges
with traditional network
backup approaches

Then I'll show you our
solution architecture

Key Features

(V) Dive into idempotent
backups & vendor-neutral
design

Q Demonstrate diff severity
scoring with rules & ML
enhancement

Cover SHA-256 hash
verification for backup
integrity

Live Demo
See everything

working together in a
live demonstration

The Problem: Why Network Backups Are Hard

Challenge 1: Vendor Lock-in

¢ Every vendor has different backup methods

o Cisco 10S uses different commands
than Juniper Junos

o NX-0S, EOS, I0S-XR all have their own quirks

» This means maintaining separate scripts
for each platform

Challenge 3: No Change Prioritization
« All changes look the same - a BGP change is
treated the same as a description change

» No way to know if a change is critical or low-risk
o Everything requires manual review

Challenge 2: False Positives
» Timestamps change on every backup,
even if config hasn't changed

» Metadata differences create noise
in version control

» This leads to unnecessary commits and PRs

Challenge 4: Backup Integrity

* How do you know if a backup file is corrupted?
* What if someone tampered with the backup?

» No verification before restore operations

Solution Overview

Core Principles:

0 Idempotent: Vendor-Neutral:

» Only backup when actual configuration e Single playbook works across all platforms

changes occur

Vendor-Neutral: v Intelligent:

e Automatic severity scoring to prioritize changes

@

e Single playbook works across all platfforms

Secure:

¢ Hash verification ensures backup integrity

@ ¢ Built on Ansible’s network.backup collection
» Works with 10S, I0S-XR, NX-0OS, EQOS, Junos out of the box

0 git - Integrates with Git for version control and collaboration

Architecture Overview (High Level)

Here’s how it all fits together:

Backup Role Restore Role
:' —_—) New Backup Retrieve Backup C—g : -
Data Store
Backup Role ¢ Restore Role
e Retrieves running » Retrieves backup from
configuration from Git or local storage
e - & Supports local file g
EMlEs system or Git Verifies hash before restore
- Normallze? content repositories » Applies configuration to
Gemevestimestamps/ I Automatic PR creation device
metadata) for review workflow « Platform-agnostic

e Compares with previous backup restore process

e Only creates new backup if actual changes detected

Calculates SHA-256 hash for integrity

Scores diff severity (rules-based or ML)

Collection and Module Architecture

network.backup Collection

3 B
@ backup_config l Yy Cisco I0S
SEE \ >
() restore_config =5
ansible.netcommon Helper Modules -~~~ 4 3
‘ cli_backup® 7777 || o KR
4 cli_restore & =~<o ~ —
l > _restore @ SETP
Backup Role NS TS 2
13 backup_config — il Rgeess al S }
Restore Role (i
PR © c-ocroc S pa—
N =
ﬁ anshib.scm Collection l
&> git_publish A
--- git_publish _y.]
GitHub

‘ git_retrieve --- git_retrieve_y. @
N —

Key Features At Glance

C
&
a
O
L]
@

Idempotent Backups
Only backup when config actually changes

Vendor-Neutral
One playbook, all platforms

Diff Severity Scoring

Automatic risk assessment

SHA-256 Hash Verification

Backup integrity guarantee

Git Integration
Version control and collaboration

ML-Enhanced Scoring

Optional ML model for complex scenarios

Idempotent Backups

Let’s start with idempotent backups — this is foundational.

/) The Problem:

(2 Our Solution:

» Normalization process

removes timestamps and
metadata

Traditional backups
create a file every time,
even if nothing changed

» Only actual configuration
content is compared

Timestamps, metadata
create false positives

¢ If normalized content is identical
—» skip backup

Git history becomes noisy
with empty commits

4
Result:
Clean Git history
Only meaningful changes tracked

Reduced storage and SCM noise

Normalization Examples:

» Removes: 'Time: 2026-02-01
14:30:25

* Removes: 'Command : show
running-config

* Removes: 'No configuration
change since last
restart

» Keeps: Actual configuration

Vendor Neutral Design

A\ The Challenge: € Our Approach:

* Each vendor has different CLI commands * Uses Ansible’s network resource modules

» Different output formats » Abstracts vendor differences

* Different restore methods » Single playbook works across platforms

| Juniper Junosr
4 specifici 11 boBe. ienectée]
* Pontiofs viamece hostname Router
> Ramogace [Pestldg :
ot2az 895 8Y geU)!

e i te 1 1atss
tol, t6000..02%0

snowcve. Coeanas ff °°

show ran uitae ot R heeo sostivuss

e ‘“’"m’”‘ tha)y :erenvertnes_conffcorte. ¢r [EETHEEE by

oUte_BEte . RIE ISR ote 140 Reat

sthow ran 19 1cee et razerit
" .

10

Vendor Neutral Design @

11

Supported Platforms:

‘ Cisco 10S/I0S-XE
{') CiscolOS-XR
e Cisco NX-OS

Q Arista EOS

Juniper Junos

Code Example:

- name: Create backup
- ansible.builin.include_role:

- name: network.backup.backup
, vars:

- type: "cdiff"
- data_store:
- scm:

- orign: "gi@githubcom.user/repo.git"

- filename: "{{inventory_hostname}}.ttx"
}

Same playbook works for all platforms!

Diff Severity Scoring

/. The Problem: Scoring Rules:
» All configuration changes look the same A\ CRITICAL (220 points):
« No way to prioritize what needs urgent review » BGP changes: 10 points each

) o « ACL changes: 10 points' each
» BGP changes are as important as description Sttt TACACS. RADLS): 10 boi h
ehariga=2 Nol » Security changes (AAA, ;): points ac

A\ HIGH (10-19 points):

Q Our Solution: Rules-Based Scoring - Multiple routing changes: 5 points each

« Analyzes configuration diff * VLAN changes: 5 points each
» Extracts features: BGP, ACL, routing, VLAN, @ MEDIUM (5-9 points):
interface, security « Interface changes: 3 points each
+ Assigns points based on change type © LOW (<5 points):
« Categorizes into severity levels + Description-only changes: 1 point each
Example Output:

- Severity Level: HIGH
- Severity Score: 12

Diff Severity Scoring @

13

Change ——> Diff —> Parsers —> Score > Action

Change: Device config modified

Diff: Unified diff generated

Parsers: Domain-aware analysis (BGP, ACL, Routing, etc.)
Score: Weighted severity calculation

Action: Auto-approve / Review / Block

Diff Severity Scoring (Rule Based)

£\ When to Use ML: Scoring Rules:

» Rules-based works great A CRITICAL (2 20 points):

for most cases « BGP changes: 10 points each
o Tl adienaliua » ACL changes: 10 points each

o i RADLS): i
» Complex multi-feature changes Secuiity changes(AANTARAES L5): 4 pointsieach

» Historical pattern recognition A4 HIGH (10-19 points):
« Multiple routing changes: 5 points each

» Custom organizational risk models .
« VLAN changes: 5 points each

) MEDIUM (5-9 points):
» Interface changes: 3 points each

@ LOW (<5 points):
« Description-only changes: 1 point each

Example:

Train model

python train_ml_model.py —data historical_diffs.json
Use in playbook

enable ml: true '/path/to/model.pkl

ML-Enhanced Diff Severity Scoring @

——> ML Model —> Severity +
Confidence

Learns from historical changes

Adapts to your network

Produces confidence scores

15

Backup Verification

/), The Problem: () Our Solution: SHA-256 Hash Verification () Benefits:
* How do you know if a backup « Every backup file gets a SHA-256 hash ® Detects file
file is corrupted? corruption
R « Hash stored in separate .sha256 file #
* What if sorneone tampered with e ified bef y @ Detects
the backup? » Hash verified before restore operations tampering
» No way to verify before restore During Backup: ® Prevents
’ restoring bad
1 Calculate SHA-256 hash of backup fil i
& Our Solution: SHA-256 PEHELS i e e canfigs
Hash Verification 2 Store hash in 'backup.txt.sha256’ file e Cryptographic
3 Both files committed to Git together proof of integrity

« Every backup file gets a

SHA-256 hash During Restore:

® Hash stored in separate 1 Read expected hash from .sha256’ file

.sha256 fil.
=i L 2 Calculate actual hash of backup file

Example: © ®@ MATCH — Restore proceeds
MISMATCH — Restore aborted (safety)

Backup File:

ios_device_backup. txt

Hash File: Example:
ios_device_backup.txt.sha256 Backup File: ios_device backup.txt

16 Hash File: ios_device_ backup.txt.sha256

SCM Integration (git)

! Workflow: () Benefits: () SSH Key Support:

o Backup creates PR automatically e Version control for all backups » Uses SSH keys

; - " for authentication

® Team reviews changes ¢ Collaborative review process

* Merge PR to approve backup o Audit trail ® No tokens needed

* Restore uses merged backup ® Rollback capability ® Secureandsimple
() Our Solution: SHA-256 € Workflow:

Hash Verification
¢« Backup Change
o Backup creates PR automatically i x‘ E Restore Backup

o Team reviews changes j
€) Create PullRequest -~) MATATCH - Restore aborted safet)
¢ Merge PR to approve backup

Example:
Backup File: ios_device_backup.txt
Hash File: ios_device_backup. txt.sha256

Demo In Action @

Demo

Key Takeaways @

19

0 Idempotent backups eliminate false positives
Q Vendor-neutral design reduces maintenance
Q Diff severity scoring prioritizes reviews

O Hash verification ensures backup integrity

0 Git integration enables collaboration

Q ML enhancement available for complex scenarios

Network Backup Resources @

& ®

Feature SCM Integration Playbooks
O https://github.com/ O https://github.com/ Q https://github.com/
redhat-cop/network. ansible-collections/ansible.scm rohitthakur2590/

backup/tree/ai_dev_baciup automation-playbooks

20

A Ansible community

Join the forum to participate Want to contribute? Find out
in discussions and get help! how to get involved.

Thanks!

GitHub: rohitthakur2590
Matrix: #community:ansible.com #social:ansible.com

Ansible community forum:
https://forum.ansible.com/

ANSIBLE

