
Composing systems in an
automated way with Ansible,
Podman, and bootc
Fabio Alessandro "Fale" Locati
Senior Principal Architect, Red Hat

TOC

Why?

Bootc

Creating a Containerfile for bootc images

Build and run bootc images

Automate containers with Ansible, Podman, systemd

Wrapping up

2

About me

▶ Working in IT since 2004, mostly in operations roles

▶ Active in open source communities

▶ Fedora core developer since 2010

▶ Ansible user since 2013

▶ Immutable linux user since 2016

▶ Author of 5 books, 4 of which on Ansible

▶ Senior Principal Architect @ Red Hat

3

Disclaimers

▶ Everything we are discussing is fully open source (but also available with Enterprise support)

▶ Everything we are discussing is architecture independent (x86_64, aarch64, s390x,

ppc64le)

▶ Linux is required (distro does not matter, as long as it has systemd and podman)

4

Why?

Why?

5

Why?

Why not Kubernetes?

▶ Heavy infrastructure overhead

▶ Steep learning curve

▶ Operational complexity

6

Why?

Kubernetes shaped problems

▶ Provide CaaS to others

▶ Deployments horizontal autoscaling

▶ Container auto-placement

7

Bootc

Bootc

8

Bootc

What is bootc?

▶ Tooling to turn OCI container images into bootable operating systems.

▶ Bridges container build workflows and real machines (VMs/bare-metal).

▶ Supports atomic updates & rollbacks of the whole system image.

▶ Leverages familiar container registries as distribution channels.

▶ Fits CI/CD: versioned artifacts, tests, promotions.

9

Bootc

How does immutable Linux work?

▶ OS filesystem is (mostly) Read-Only.

▶ OS updates are atomic.

▶ The OS filesystem can be reverted to previous states.

▶ User environments and applications run in isolated, layered containers.

10

Bootc

Architecture

▶ Input: Dockerfile/Containerfile→OCI image.

▶ bootc: converts image layers into a bootable rootfs.

▶ Artifacts: disk images (qcow2/raw/vmdk), ISO, or direct install.

▶ Runtime: systemd-managed services, read-mostly system.

▶ Lifecycle: pull new image, switch on reboot, rollback if needed.

11

Bootc

Minimal base (Containerfile)

▶ Start from scratch.

▶ Start from a bootc-ready base (kernel, initramfs, systemd included).

FROM quay.io/fedora/fedora-bootc:latest

▶ AlmaLinux: https://github.com/AlmaLinux/bootc-images
▶ Fedora: https://gitlab.com/fedora/bootc/base-images
▶ CentOS: https://gitlab.com/redhat/centos-stream/containers/bootc
▶ Arch: https://github.com/bootcrew/arch-bootc
▶ Debian: https://github.com/bootcrew/debian-bootc
▶ LinuxMint: https://github.com/bootcrew/linuxmint-bootc
▶ OpenSUSE: https://github.com/bootcrew/opensuse-bootc
▶ Ubuntu: https://github.com/bootcrew/ubuntu-bootc

12

https://github.com/AlmaLinux/bootc-images
https://gitlab.com/fedora/bootc/base-images
https://gitlab.com/redhat/centos-stream/containers/bootc
https://github.com/bootcrew/arch-bootc
https://github.com/bootcrew/debian-bootc
https://github.com/bootcrew/linuxmint-bootc
https://github.com/bootcrew/opensuse-bootc
https://github.com/bootcrew/ubuntu-bootc

Bootc

Adding packages

▶ Use familiar package managers during image build, not at runtime.

▶ Clean caches to keep layers lean and deterministic.

▶ Example:

RUN dnf -y install \
nebula \
neovim \
&& dnf -y clean all

▶ Note: this is not an interactive session (-y mandatory).

13

Bootc

WARNING

▶ Never use:

▶ dnf -y update

▶ dnf -y upgrade

▶ Ok: single package upgrade

14

Bootc

Adding services

▶ Define systemd units as part of the image.

▶ Example:

COPY myDaemon.service /etc/systemd/system/
RUN systemctl enable myDaemon.service

15

Bootc

Adding users

▶ Leverage Systemd sysuser.

▶ sysuser-fale.conf

#Type Name ID GECOS HomeDirectory Shell
u fale 1000 "Fale" /home/fale /bin/bash
g wheel - -
m fale wheel

▶ Containerfile

COPY sysuser-fale.conf /usr/lib/sysusers.d/fale.conf

▶ https://www.freedesktop.org/software/systemd/man/latest/sysusers.d.html
16

https://www.freedesktop.org/software/systemd/man/latest/sysusers.d.html

Bootc

WARNING

RUN useradd -m demo && echo 'demo:demo' | chpasswd

Any invocation of useradd or groupadd that does not allocate a fixed UID/GIDmay be subject

to drift in subsequent rebuilds by default.

17

Bootc

Adding users files

▶ Leverage Systemd sysuser.

▶ tmpfiles-fale.conf

#Type Path Mode User Group Age Argument...
d /var/home/fale 0700 fale fale -
d /var/home/fale/.ssh 0700 fale fale -
f+ /var/home/fale/.ssh/authorized_keys 0600 fale fale - ssh-rsa AAAAB....CWw==
Z /var/home/fale - - - -

▶ Containerfile

COPY tmpfiles-fale.conf /etc/tmpfiles.d/fale.conf

▶ https://www.freedesktop.org/software/systemd/man/latest/tmpfiles.d.html18

https://www.freedesktop.org/software/systemd/man/latest/tmpfiles.d.html

Bootc

Linting

RUN bootc container lint

19

Bootc

Building the container

▶ Container build produces the canonical artifact.

▶ Keep tags semantic (e.g., 1.2.0) for safe rollouts.

▶ Example:

sudo podman build -t localhost/myos:1.0.0 .

20

Bootc

Squashing

podman build --squash --pull-always .

21

Bootc

Publishing updates

▶ New image = newOS version; hosts update atomically.

▶ Exactly like any other container image:

podman push localhost/myos:1.0.0

22

Bootc

Building an ISO

mkdir output
sudo podman run --rm -it --privileged --pull=newer \

--security-opt label=type:unconfined_t \
-v ./output:/output \
-v /var/lib/containers/storage:/var/lib/containers/storage \
quay.io/centos-bootc/bootc-image-builder:latest \
--type iso \
--chown 1000:1000 \
--rootfs btrfs \
localhost/myos:1.0.0

https://github.com/osbuild/bootc-image-builder
23

https://github.com/osbuild/bootc-image-builder

Bootc

Building a bootable image

mkdir output
sudo podman run \

--rm \
-it \
--privileged \
--pull=newer \
--security-opt label=type:unconfined_t \
-v ./output:/output \
-v /var/lib/containers/storage:/var/lib/containers/storage \
quay.io/centos-bootc/bootc-image-builder:latest \
--type qcow2 \
--use-librepo=True \
--rootfs btrfs \
localhost/myos:1.0.0

https://github.com/osbuild/bootc-image-builder

24

https://github.com/osbuild/bootc-image-builder

Bootc

Run a bootable image

qemu-system-x86_64 \
-M accel=kvm \
-cpu host \
-smp 2 \
-m 4096 \
-bios /usr/share/OVMF/OVMF_CODE.fd \
-serial stdio \
-snapshot output/qcow2/disk.qcow2

25

Bootc

Installing bootc OS

podman run --rm \
-v /dev:/dev \
-v /var/lib/containers:/var/lib/containers \
-v /:/target \
--privileged \
--pid=host \
--security-opt label=type:unconfined_t \
quay.io/fale/server:stable \

bootc install to-existing-root \
--root-ssh-authorized-keys /target/root/.ssh/authorized_keys

26

Bootc

Atomic updates & rollback

▶ Updates are transactional; system switches entirely on reboot.

bootc upgrade --apply

▶ Rollback path is symmetrical and fast.

bootc rollback --apply

▶ No partial upgrades or dependency hell on production hosts.

▶ Possible to switch to a different image:

bootc switch --apply quay.io/fedora/fedora-bootc:43

27

Bootc

Some suggestions

▶ Base OS image + application layer(s).

▶ Keep image single-purpose (appliance mindset).

▶ Prefer deterministic package sets and configs.

▶ Automate!

28

Automate containers with Ansible, Podman, systemd

Automatecontainers
withAnsible,Podman,
systemd

29

Automate containers with Ansible, Podman, systemd

What is Podman?

▶ A daemonless, rootless alternative to Docker

▶ Donated to the CNCF in November 2024

▶ Key features

▶ Compatible with Docker CLI

▶ Native support for OCI containers

▶ Native support for Kubernetes objects

30

Automate containers with Ansible, Podman, systemd

What is systemd?

▶ A system and service manager for Linux (aka PID1)

▶ Controls system processes, services, and dependencies

▶ Replaces older init systems (SysV, Upstart)

▶ Interesting features

▶ Manages long-running services efficiently
▶ Supports dependency management and auto-restarts
▶ Provides robust logging and monitoring with journald
▶ Allows extensions for custom kind of resources

▶ Why Use systemd for container management?

▶ Enables native service control for containers
▶ Simplifies startup, shutdown, and auto-restart of containers

31

Automate containers with Ansible, Podman, systemd

What is Quadlet?

▶ A systemd helper for Podman

▶ Simplifies systemd unit file creation for containers

▶ Allows easy deployment and management of containerized services

▶ Technically, Quadlet does not exists (anymore)

32

Automate containers with Ansible, Podman, systemd

Quadlet key features?

▶ Uses declarative configuration for container management

▶ Supports auto-restarts and dependencies

▶ Enables seamless integration with systemd services

33

Automate containers with Ansible, Podman, systemd

Why Quadlet?

▶ Removes complexity frommanaging Podman containers via systemd

▶ Reduces the need for manual unit file configurations

▶ Ideal for persistent containerized applications

34

Automate containers with Ansible, Podman, systemd

Quadlet base example

[Container]
ContainerName=myservice
Image=docker.io/my/service:1.0.0

[Install]
WantedBy=default.target

35

Automate containers with Ansible, Podman, systemd

Strategy

▶ Place a file

▶ Reload systemd daemons

▶ Start and enable daemon

36

Automate containers with Ansible, Podman, systemd

Ansible code example

- name: Ensure the container launcher is up to date
ansible.builtin.copy:

src: myservice.container
dest: /etc/containers/systemd/myservice.container
owner: root
group: root
mode: '0644'

register: systemd_daemons
notify: Restart myservice

- name: Reload systemd daemons if needed
ansible.builtin.systemd:

daemon_reload: true
when: systemd_daemons.changed

- name: Ensure services are started and enabled
ansible.builtin.service:

name: myservice
state: started
enabled: true

- name: Restart myservice
ansible.builtin.service:

name: myservice
state: restarted

37

Automate containers with Ansible, Podman, systemd

Dependencies

[Unit]
After=local-fs.target nebula.service

38

Automate containers with Ansible, Podman, systemd

Environment variables

[Container]
Environment=SECRET_KEY=YOUR_SECRET_KEY

39

Automate containers with Ansible, Podman, systemd

Port publishing

[Container]
PublishPort=8080:80/tcp

40

Automate containers with Ansible, Podman, systemd

Volumes

[Container]
Volume=/opt/mysrv:/etc/myservice

41

Wrapping up

Wrappingup

42

Wrapping up

Wrapping up

▶ Kubernetes is good for Kubernetes-shaped problems

▶ bootc offers a reliable, secure, and stable operating environment

▶ It is easy to create distros with bootc

▶ Ansible and Podman can be great to run containers

▶ Ansible and Podman is a very straightforward solution

43

Wrapping up

Questions?
Email: fale@redhat.com

Fediverse: @fale@fale.io

44

Wrapping up

Links

▶ https://podman.io/docs/

▶ https://podman.io/blogs/2023/04/quadlet-tutorial.html

▶ https://docs.ansible.com/ansible/latest/

▶ https:
//fale.io/blog/2023/12/31/share-volumes-between-podman-systemd-services

▶ https://bootc-dev.github.io/bootc/

▶ https://docs.fedoraproject.org/en-US/bootc/

▶ https://fedoramagazine.org/building-your-own-atomic-bootc-desktop/
45

https://podman.io/docs/
https://podman.io/blogs/2023/04/quadlet-tutorial.html
https://docs.ansible.com/ansible/latest/
https://fale.io/blog/2023/12/31/share-volumes-between-podman-systemd-services
https://fale.io/blog/2023/12/31/share-volumes-between-podman-systemd-services
https://bootc-dev.github.io/bootc/
https://docs.fedoraproject.org/en-US/bootc/
https://fedoramagazine.org/building-your-own-atomic-bootc-desktop/

	Why?
	Bootc
	Creating a Containerfile for bootc images
	Build and run bootc images

	Automate containers with Ansible, Podman, systemd
	Wrapping up

