Composing systems in an
automated way with Ansible,
Podman, and bootc

Fabio Alessandro "Fale" Locati
Senior Principal Architect, Red Hat

TOC

Why?
Bootc
Creating a Containerfile for bootc images

Build and run bootc images

Automate containers with Ansible, Podman, systemd

Wrapping up

& RedHat

About me

Working in IT since 2004, mostly in operations roles
Active in open source communities

Fedora core developer since 2010

Ansible user since 2013

Immutable linux user since 2016

Author of 5 books, 4 of which on Ansible

Senior Principal Architect @ Red Hat

& RedHat

Disclaimers

Everything we are discussing is fully open source (but also available with Enterprise support)

Everything we are discussing is architecture independent (x86_64, aarch64, s390x,
ppc6b4le)

Linux is required (distro does not matter, as long as it has systemd and podman)

& RedHat

Why?

Why?

Why not Kubernetes?

» Heavy infrastructure overhead
» Steep learning curve

» Operational complexity

& RedHat

Why?

Kubernetes shaped problems

» Provide CaaS to others
» Deployments horizontal autoscaling

» Container auto-placement

& RedHat

Bootc

s

Bootc

What is bootc?

Tooling to turn OCI container images into bootable operating systems.

Bridges container build workflows and real machines (VMs/bare-metal).

Supports atomic updates & rollbacks of the whole system image.
Leverages familiar container registries as distribution channels.

Fits Cl/CD: versioned artifacts, tests, promotions.

& RedHat

Bootc

How does immutable Linux work?

OS filesystem is (mostly) Read-Only.
OS updates are atomic.

The OS filesystem can be reverted to previous states.

User environments and applications run in isolated, layered containers.

& RedHat

Bootc

Architecture

Input: Dockerfile/Containerfile — OClimage.

bootc: converts image layers into a bootable rootfs.

Artifacts: disk images (qcow2/raw/vmdk), ISO, or direct install.

Runtime: systemd-managed services, read-mostly system.

Lifecycle: pull new image, switch on reboot, rollback if needed.

& RedHat

Bootc

Minimal base (Containerfile)

» Start from scratch.

» Start from a bootc-ready base (kernel, initramfs, systemd included).

FROM quay.io/fedora/fedora-bootc:latest

>

AlmaLinux: https://github.com/AlmaLlinux/bootc-images

Fedora: https://gitlab.com/fedora/bootc/base-images

CentOS: https://gitlab.com/redhat/centos-stream/containers/bootc
Arch: https://github.com/bootcrew/arch-bootc

Debian: https://github. com/bootcrew/debian-bootc

LinuxMint: https://github.com/bootcrew/linuxmint-bootc

OpenSUSE.: https://github.com/bootcrew/opensuse-bootc

Ubuntu: https://github. com/bootcrew/ubuntu-bootc

& RedHat

https://github.com/AlmaLinux/bootc-images
https://gitlab.com/fedora/bootc/base-images
https://gitlab.com/redhat/centos-stream/containers/bootc
https://github.com/bootcrew/arch-bootc
https://github.com/bootcrew/debian-bootc
https://github.com/bootcrew/linuxmint-bootc
https://github.com/bootcrew/opensuse-bootc
https://github.com/bootcrew/ubuntu-bootc

Bootc

Adding packages

Use familiar package managers during image build, not at runtime.
Clean caches to keep layers lean and deterministic.

Example:

RUN dnf -y install \
nebula \
neovim \

&& dnf -y clean all

Note: this is not an interactive session (-y mandatory).

& RedHat

Bootc

> Never use:
» dnf -y update
> dnf -y upgrade

» Ok: single package upgrade

WARNING

& RedHat

Bootc

Adding services

Define systemd units as part of the image.

Example:
COPY myDaemon.service /etc/systemd/system/

RUN systemctl enable myDaemon.service

& RedHat

Bootc

Adding users

Leverage Systemd sysuser.

sysuser-fale.conf

#Type Name ID GECOS HomeDirectory Shell
u fale 1000 "Fale" /home/fale /bin/bash

g wheel - -

m fale wheel

Containerfile

COPY sysuser-fale.conf /usr/lib/sysusers.d/fale.conf

https://www.freedesktop.org/software/systemd/man/latest/sysusers.d.html

& RedHat

https://www.freedesktop.org/software/systemd/man/latest/sysusers.d.html

Bootc

WARNING

RUN useradd -m demo && echo 'demo:demo' | chpasswd

Any invocation of useradd or groupadd that does not allocate a fixed UID/GID may be subject
to drift in subsequent rebuilds by default.

& RedHat

Bootc

Adding users files

Leverage Systemd sysuser.

tmpfiles-fale.conf

#Type Path Mode User Group Age Argument. ..

d /var/home/fale 0700 fale fale -

d /var/home/fale/.ssh 0700 fale fale -

f+ /var/home/fale/.ssh/authorized_keys 0600 fale fale - ssh-rsa AAAAB....CWw==
Z /var/home/fale - - - -

Containerfile

COPY tmpfiles-fale.conf /etc/tmpfiles.d/fale.conf

https://www.freedesktop.org/software/systemd/man/latest/tmpfiles.d.html & RedHat

https://www.freedesktop.org/software/systemd/man/latest/tmpfiles.d.html

Bootc

RUN bootc container lint

Linting

& RedHat

Bootc

Building the container

Container build produces the canonical artifact.
Keep tags semantic (e.g., 1.2.0) for safe rollouts.

Example:

sudo podman build -t localhost/myos:1.0.0 .

& RedHat

Bootc

Squashing

podman build --squash --pull-always .

& RedHat

Bootc

>

>

Publishing updates

New image = new OS version; hosts update atomically.

Exactly like any other container image:

podman push localhost/myos:1.0.0

& RedHat

Bootc

Building an ISO

mkdir output
sudo podman run --rm -it --privileged --pull=newer \
--security-opt label=type:unconfined_t \
-v ./output:/output \
-v /var/lib/containers/storage:/var/lib/containers/storage \
quay.io/centos-bootc/bootc-image-builder:latest \
--type iso \
—--chown 1000:1000 \
--rootfs btrfs \
localhost/myos:1.0.0

https://github.com/osbuild/bootc-image-builder

& RedHat

https://github.com/osbuild/bootc-image-builder

Bootc

Building a bootable image

mkdir output
sudo podman run \

--rm \

-it \

--privileged \

--pull=newer \

--security-opt label=type:unconfined_t \

-v ./output:/output \

-v /var/lib/containers/storage:/var/lib/containers/storage \
quay.io/centos-bootc/bootc-image-builder:latest \
--type qcow2 \

—--use-librepo=True \

--rootfs btrfs \

localhost/myos:1.0.0

https://github.com/osbuild/bootc-image-builder

& RedHat

https://github.com/osbuild/bootc-image-builder

Bootc

Run a bootable image

gemu-system-x86_64 \
-M accel=kvm \
-cpu host \
-smp 2 \
-m 4096 \
-bios /usr/share/0VMF/0VMF_CODE.fd \
-serial stdio \

-snapshot output/qcow2/disk.qcow?2

& RedHat

Bootc

podman run

Installing bootc OS

--rm \
-v /dev:/dev \
-v /var/lib/containers:/var/lib/containers \
-v /:/target \
--privileged \
--pid=host \
--security-opt label=type:unconfined_t \
quay.io/fale/server:stable \
bootc install to-existing-root \

--root-ssh-authorized-keys /target/root/.ssh/authorized_keys

& RedHat

Bootc

Atomic updates & rollback

Updates are transactional; system switches entirely on reboot.

bootc upgrade --apply

Rollback path is symmetrical and fast.

bootc rollback --apply
No partial upgrades or dependency hell on production hosts.

Possible to switch to a different image:

bootc switch --apply quay.io/fedora/fedora-bootc:43

& RedHat

Bootc

Some suggestions

Base OS image + application layer(s).
Keep image single-purpose (appliance mindset).
Prefer deterministic package sets and configs.

Automate!

& RedHat

Automate containers
with Ansible, Podman,
systemd

29

Automate containers with Ansible, Podman, systemd

What is Podman?

» A daemonless, rootless alternative to Docker
» Donated to the CNCF in November 2024
» Key features

» Compatible with Docker CLI
» Native support for OCl containers

» Native support for Kubernetes objects

& RedHat

Automate containers with Ansible, Podman, systemd

What is systemd?

» A system and service manager for Linux (aka PID1)
» Controls system processes, services, and dependencies
» Replaces older init systems (SysV, Upstart)
» Interesting features
» Manages long-running services efficiently
» Supports dependency management and auto-restarts
» Provides robust logging and monitoring with journald
» Allows extensions for custom kind of resources
» Why Use systemd for container management?
» Enables native service control for containers

» Simplifies startup, shutdown, and auto-restart of containers

& RedHat

32

Automate containers with Ansible, Podman, systemd

What is Quadlet?

» Asystemd helper for Podman
» Simplifies systemd unit file creation for containers
» Allows easy deployment and management of containerized services

» Technically, Quadlet does not exists (anymore)

& RedHat

Automate containers with Ansible, Podman, systemd

Quadlet key features?

» Uses declarative configuration for container management
» Supports auto-restarts and dependencies

» Enables seamless integration with systemd services

33

& RedHat

Automate containers with Ansible, Podman, systemd

Why Quadlet?

» Removes complexity from managing Podman containers via systemd
» Reduces the need for manual unit file configurations

» Ideal for persistent containerized applications

& RedHat

35

Automate containers with Ansible, Podman, systemd

Quadlet base example

[Container]
ContainerName=myservice

Image=docker.io/my/service:1.0.0

[Install]
WantedBy=default.target

& RedHat

Automate containers with Ansible, Podman, systemd

Strategy

» Place afile
» Reload systemd daemons

» Start and enable daemon

36

& RedHat

37

Automate containers with Ansible, Podman, systemd

- name: Ensure the container launcher is up to date

Ansible code example

ansible.builtin.copy:
src: myservice.container

dest: /etc/containers/systemd/myservice.container

owner: root
group: root
mode: '0644'
register: systemd_daemons
notify: Restart myservice
name: Reload systemd daemons if needed
ansible.builtin.systemd:
daemon_reload: true
when: systemd_daemons.changed
name: Ensure services are started and enabled
ansible.builtin.service:
name: myservice
state: started
enabled: true

name: Restart myservice

ansible.builtin.service:
name: myservice
state: restarted

& RedHat

38

Automate containers with Ansible, Podman, systemd

Dependencies

[Unit]

After=local-fs.target nebula.service

& RedHat

39

Automate containers with Ansible, Podman, systemd

Environment variables

[Container]

Environment=SECRET_KEY=YOUR_SECRET_KEY

& RedHat

Automate containers with Ansible, Podman, systemd

[Container]

PublishPort=8080:80/tcp

40

Port publishing

& RedHat

4

Automate containers with Ansible, Podman, systemd

[Container]

Volume=/opt/mysrv:/etc/myservice

Volumes

& RedHat

Wrappingup

42

43

Wrapping up

Wrapping up

Kubernetes is good for Kubernetes-shaped problems

bootc offers a reliable, secure, and stable operating environment
Itis easy to create distros with bootc

Ansible and Podman can be great to run containers

Ansible and Podman is a very straightforward solution

& RedHat

44

Wrapping up

Questions?

Email: fale@redhat.com

Fediverse: @fale@fale.io

& RedHat

45

Wrapping up

Links

https://podman.io/docs/
https://podman.io/blogs/2023/04/quadlet-tutorial.html
https://docs.ansible.com/ansible/latest/

https:
//fale.io/blog/2023/12/31/share-volumes-between-podman-systemd-services

https://bootc-dev.github.io/bootc/
https://docs.fedoraproject.org/en-US/bootc/

https://fedoramagazine.org/building-your-own-atomic-bootc-desktop/

& RedHat

https://podman.io/docs/
https://podman.io/blogs/2023/04/quadlet-tutorial.html
https://docs.ansible.com/ansible/latest/
https://fale.io/blog/2023/12/31/share-volumes-between-podman-systemd-services
https://fale.io/blog/2023/12/31/share-volumes-between-podman-systemd-services
https://bootc-dev.github.io/bootc/
https://docs.fedoraproject.org/en-US/bootc/
https://fedoramagazine.org/building-your-own-atomic-bootc-desktop/

	Why?
	Bootc
	Creating a Containerfile for bootc images
	Build and run bootc images

	Automate containers with Ansible, Podman, systemd
	Wrapping up

