
Don't Fear the Jinja
Matt Davis - Ansible Core Architect @ Red Hat

CfgMgmtCamp 2026

{{ ... }}

It looks so simple...

● It's not.
● Every {{ }} expression -> an ephemeral code-generated Python module

{{ inventory_hostname | upper }}

from jinja2.runtime import LoopContext, Macro, Markup, Namespace, TemplateNotFound, TemplateReference, TemplateRuntimeError, Undefined, escape, identity,
internalcode, markup_join, missing, str_join
name = None

def root(context, missing=missing, environment=environment):
 resolve = context.resolve_or_missing
 undefined = environment.undefined
 concat = environment.concat
 cond_expr_undefined = Undefined
 if 0: yield None
 l_0_inventory_hostname = resolve('inventory_hostname')
 try:
 t_1 = environment.filters['upper']
 except KeyError:
 @internalcode
 def t_1(*unused):
 raise TemplateRuntimeError("No filter named 'upper' found.")
 pass
 yield environment.finalize(context, t_1((undefined(name='inventory_hostname') if l_0_inventory_hostname is missing else l_0_inventory_hostname)))

blocks = {}
debug_info = '1=18'

Why do we need all this?

● Technically, we probably don't.

- hosts: web
 tasks:
 - package:
 name:
 - apache2
 - nginx
- hosts: db
 tasks:
 - package:
 name:
 - mariadb

Isn't This Better?

- hosts: all
 tasks:
 - package:
 name: '{{ required_packages }}' 👀

● {{ }} default was a very unfortunate YAML collision
● Unquoted YAML strings starting with { look like inline mappings to YAML

○ {{ anywhere else in string needs no special treatment!
● Similar later systems (e.g. GHA/AZP) use ${{ }}
● Ansible could trivially use both {{ and ${{

○ 3-line code change
● Minor backward-compatibility problems:

○ msg: The cost is ${{ cost }}
○ win_powershell: ${{target_var}} = Get-Item C:\
○ Is $ a static part of the output or a template marker?

What's Up With Quoting Handlebars?

Jinja in Ansible - Templates

● Can contain multiple {{ }} expression blocks and static text
● Directive blocks {% %} for looping, locals, macros, includes, etc.
● Supported for text templates, variables and most playbook keywords
● The full power of Jinja

Jinja in Ansible - Expressions

● Render a single value
● Can use Jinja filter/test plugins
● Expressions are what's valid inside {{ }}

○ Cannot have embedded {{ }} or use {% directive blocks
● foo | selectattr("bar", "==", "baz)

Jinja in Ansible - Conditionals

● Ansible-specific construct
● Special expression that must yield true/false

○ when: foo is integer
○ until: bar > 5
○ assert:

 that: baz == 42

● Non true/false conditional result is an error in 2.19+

So is a Playbook a Jinja Template?

● Common misconception, but nope
● Template-ability implemented (or not) by each keyword
● Special sauce over Jinja for Ansible features

○ Automatic lazy template-on-fetch
○ Native Mode (contributed to Jinja upstream)

● Most templating occurs at task keyword level
○ So each playbook keyword value can be a full template

● Fully-dynamic play/block/task is not supported

Jinja Template Behavior in Ansible

● Only run on the Ansible controller
● Should not have side effects

○ May be evaluated more often than you think
○ Use custom filter/test plugins and {{ lookup("pipe" ... }} with care

● Not just strings and scalars
● Lazy recursive templating

○ Templates are not evaluated until referenced
○ Laziness was vastly improved in 2.19

DEMO - Complex Types and Laziness

Fleshing out the package sample

● Add a separate list of packages installed on all hosts?

- package:
 name: |-
 {{ (shared_packages | default([])) +
 (host_packages | default([])) | unique }}

● Starting to get a lot of logic in here- what if we need to reuse it?

Reusable Logic Options : Copy/Paste

● Simplest, but rarely the best.

Reusable Logic Options : Roles

● Lots of tasks on single hosts? Roles are OK.
● Otherwise overkill.

Reusable Logic Options : Ansible Jinja Plugins

● Custom filters can transform values
○ foo | my_custom_filter
○ list_of_foo | map('my_custom_filter')

● Custom tests can answer yes/no questions
○ foo is my_custom_test
○ list_of_foo | select('my_custom_test')

● Somewhat heavyweight - must be written in Python
● Requires packaging/distribution
● Hides complexity (+/-), good performance

Reusable Logic Options : Jinja Macros

● Easier than custom (Python) Jinja plugins
● More limited than custom Jinja plugins
● Lightweight content-embeddable inline functions (2.19+)

○ Still clunkier than it should be :(

DEMO - Var Embedded Macro

Variable Precedence and Jinja Templates

● Templates and expressions are always evaluated in a context
○ Context == "where the variable values come from"

● Each context is a many-layered cake of snapshotted variable values
● Dozens of different contexts- common ones:

○ Play (no host variables)
○ Task+Hostvars (Play + Task * Hosts)
○ Task+Hostvars+Loop ((Play + Task * Hosts) + Current Loop Values)

Variable Precedence and Jinja Templates - cont'd

● Any guesses on what this will do?

- name: play using {{ my_host_var }}
 hosts: all
 tasks:
 - name: task using {{ my_host_var }}
 shell: echo {{ my_host_var }}

What's Up With Templated Play/Task Names?

● Luckily a pretty isolated case. So. Many. Bugs.
○ Complex callback interactions

● Short answer: Just Don't
● If you must, use vars guaranteed to be defined above host level

Jinja Growing Pains

● No list/dict comprehensions
○ Some builtins, (e.g.: map, select) work for simple stuff

● No (supported) collection mutation
○ Ansible blocks most workarounds by default for security reasons
○ e.g. {% set _=foodict.__setitem__(k, v) %}

● Composition is harder than it should be
● Performance cliffs

○ Oh the stories...
○ Please file issues for things that are noticeably slow!

● Exercise:
○ Use Jinja against setup to get a list of active NIC names on a Linux host that have no IPv6

addresses. Not impossible, but harder than it should be!

Jinja Growing Pains - Solutions

● KEEP IT SIMPLE
○ Could/should you do this outside of Ansible?

● Understand variable precedence
● Reuse, compose

○ Hide complexity in nested templates, macros, plugins
○ Minimize copy/paste and monoliths

● Reshape data where possible
○ Our own facts need a lot of work here!

● Interactively test templates in e.g., ansible-console, ansibug
● New ways to fill in gaps

○ Macros-as-filters/tests
○ Expression/comprehension-esque filters

Questions?

BONUS CONTENT - 2.21 Register Projections

● 2.21 includes new goodies in register
○ Register multiple variables
○ Task conditionals can access the results without using register at all
○ No quotes or {{ }} required (ala set_fact templates)
○ Stacking values (access previous values registered by the same task)
○ For loops, access individual and accumulated loop results at the same time

● DEMO

