Don't Fear the Jinja

Matt Davis - Ansible Core Architect @ Red Hat
CfgMgmtCamp 2026

W - 1

It looks so simple...

e It's not.
e Every {{}} expression -> an ephemeral code-generated Python module

{{ inventory_hostname | upper }}

from jinja2.runtime import LoopContext, Macro, Markup, Namespace, TemplateNotFound, TemplateReference, TemplateRuntimeError, Undefined, escape, identity,
internalcode, markup_join, missing, str_join
name = None

def root(context, missing=missing, environment=environment):

resolve = context.resolve_or_missing
undefined = environment.undefined
concat = environment.concat
cond_expr_undefined = Undefined
if 0: yield None
|_0_inventory_hostname = resolve('inventory_hostname')
try:

t_1 = environment.filters['upper']
except KeyError:

@internalcode

deft_1(*unused):

raise TemplateRuntimeError("No filter named 'upper' found.")

pass
yield environment.finalize(context, t_1((undefined(name='"inventory_hostname’) if |_0_inventory_hostname is missing else |_0_inventory_hostname)))

blocks = {}
debug_info ='1=18'

Why do we need all this?

e Technically, we probably don't.

- hosts: web
tasks:
- package:
name:
- apache2
- nginx
- hosts: db
tasks:
- package:
name:
- mariadb

Isn't This Better?

- hosts: all
tasks:
- package:
name: '{{ required_packages }}' ¢

What's Up With Quoting Handlebars?

e {{}} default was a very unfortunate YAML collision
e Unquoted YAML strings starting with { look like inline mappings to YAML

o {{ anywhere else in string needs no special treatment!

e Similar later systems (e.g. GHA/AZP) use ${{ }}
e Ansible could trivially use both {{ and ${{

o 3-line code change

e Minor backward-compatibility problems:
o msg: The cost is ${{ cost }}
o win_powershell: ${{target_var}} = Get-Item C:\
o Is $ a static part of the output or a template marker?

Jinja in Ansible - Templates

Can contain multiple {{ }} expression blocks and static text
Directive blocks {% %} for looping, locals, macros, includes, etc.
Supported for text templates, variables and most playbook keywords

[
o
[
e The full power of Jinja

Jinja in Ansible - Expressions

e Render a single value
e Can use Jinja filter/test plugins

e Expressions are what's valid inside {{ }}
o Cannot have embedded {{ }} or use {% directive blocks

e foo | selectattr("bar", "==", "baz)

Jinja in Ansible - Conditionals

e Ansible-specific construct

e Special expression that must yield true/false
o when: foo is integer
o until: bar > 5
o assert:
that: baz == 42

e Non true/false conditional result is an error in 2.19+

So is a Playbook a Jinja Template?

e Common misconception, but nope
e Template-ability implemented (or not) by each keyword

e Special sauce over Jinja for Ansible features
o Automatic lazy template-on-fetch
o Native Mode (contributed to Jinja upstream)

e Most templating occurs at task keyword level
o So each playbook keyword value can be a full template

e Fully-dynamic play/block/task is not supported

Jinja Template Behavior in Ansible

e Only run on the Ansible controller

e Should not have side effects

o May be evaluated more often than you think
o Use custom filter/test plugins and {{ lookup("pipe" ... }} with care

e Not just strings and scalars
e Lazy recursive templating

o Templates are not evaluated until referenced
o Laziness was vastly improved in 2.19

DEMO - Complex Types and Laziness

Fleshing out the package sample

e Add a separate list of packages installed on all hosts?

- package:
name: |-
{{ (shared_packages | default([])) +
(host_packages | default([])) | unique }}

e Starting to get a lot of logic in here- what if we need to reuse it?

Reusable Logic Options : Copy/Paste

e Simplest, but rarely the best.

Reusable Logic Options : Roles

e Lots of tasks on single hosts? Roles are OK.
e Otherwise overkill.

Reusable Logic Options : Ansible Jinja Plugins

e (Custom filters can transform values

o foo | my_custom_filter
o list_of_foo | map('my_custom_filter')

e Custom tests can answer yes/no questions

o foo is my_custom_test
o list_of_foo | select('my_custom_test')

e Somewhat heavyweight - must be written in Python
e Requires packaging/distribution
e Hides complexity (+/-), good performance

Reusable Logic Options : Jinja Macros

e Easier than custom (Python) Jinja plugins
e More limited than custom Jinja plugins

e Lightweight content-embeddable inline functions (2.19+)
o Still clunkier than it should be :(

EMO - Var Embedded Macro

Variable Precedence and Jinja Templates

e Templates and expressions are always evaluated in a context
o Context == "where the variable values come from"

e Each context is a many-layered cake of snapshotted variable values

e Dozens of different contexts- common ones:
o Play (no host variables)
o Task+Hostvars (Play + Task * Hosts)
o Task+Hostvars+Loop ((Play + Task * Hosts) + Current Loop Values)

Variable Precedence and Jinja Templates - cont'd

e Any guesses on what this will do?

- name: play using {{ my_host_var }}
hosts: all
tasks:
- name: task using {{ my_host_var
shell: echo {{ my_host_var }}

What's Up With Templated Play/Task Names?

e Luckily a pretty isolated case. So. Many. Bugs.
o Complex callback interactions

e Short answer: Just Don't
e If you must, use vars guaranteed to be defined above host level

Jinja Growing Pains

e No list/dict comprehensions
o Some builtins, (e.g.: map, select) work for simple stuff

e No (supported) collection mutation
o Ansible blocks most workarounds by default for security reasons
o e.g.{% set_=foodict.__setitem__(k, v) %

e Composition is harder than it should

Performance cliffs
o Oh the stories...
o Please file issues for things that are notig$
e [Exercise:

o Use Jinja against setup to get a list of a®
addresses. Not impossible, but harder th?

Jinja Growing Pains - Solutions

e KEEP IT SIMPLE

o Could/should you do this outside of Ansible?
Understand variable precedence
e Reuse, compose

o Hide complexity in nested templates, macros, plugins
o Minimize copy/paste and monoliths

e Reshape data where possible
o Our own facts need a lot of work here!

Interactively test templates in e.g., ansible-console, ansibug
e New ways to fill in gaps

o Macros-as-filters/tests
o Expression/comprehension-esque filters

Questions?

BONUS CONTENT - 2.21 Register Projections

e 2.21 includes new goodies in register

Register multiple variables

Task conditionals can access the results without using register at all

No quotes or {{ }} required (ala set_fact templates)

Stacking values (access previous values registered by the same task)

For loops, access individual and accumulated loop results at the same time

e DEMO

o O O O O

